期刊文献+

风荷载作用下输电塔结构动力可靠度分析 预览 被引量:6

Dynamic reliability analysis of wind- induced transmission tower
在线阅读 免费下载
收藏 分享 导出
摘要 介绍一种新的随机结构分析方法-概率密度演化方法,以及基于该方法的动力可靠度分析方法.为了实现其在风工程中的应用,从随机Fourier谱的思想出发,阐述了随机风场具有随机性的物理本质,给出了两个基本随机变量-地面粗糙度z0和10 m高平均风速Uf0服从的概率密度函数.最后,应用概率密度演化方法对某输电塔结构受风荷载作用下的动力可靠度进行了分析,并将分析结果同随机模拟方法计算得到的结果进行比较.算例证明,概率密度演化方法可以准确、有效地分析风荷载作用下输电塔结构的动力可靠度. A new stochastic structure analysis method, that is, probability density evolution method (PDEM) , is introduced firstly. Then, in order to apply it in the wind engineering, the idea of the stochastic Fourier spectrum is used to disclose the physical essence of the randomness of the wind field. Meantime, two basic random variables, that is, the roughness length z0 and the mean wind velocity at 10 m height U10, as well as their probability density functions (PDF) , are obtained. Finally, the PDEM is applied in the dynamic reliability analysis of a transmission tower subjected to the wind loading. The comparisons with the Monte Carlo simulations are carried out, which demonstrate the PDEM can be applied in the wind engineering accurately and efficiently.
作者 张琳琳 李杰 ZHANG Lin-lin  LI Jie 
出处 《福州大学学报:自然科学版》 CAS CSCD 北大核心 2005年第z1期36-41,共6页 Journal of Fuzhou University(Natural Science Edition)
关键词 输电塔 概率密度演化 随机风场 随机FOURIER谱 动力可靠度 transmission tower probability density evolution stochastic wind field stochastic Fourier spectrum dynamic reliability
作者简介 张琳琳(1979-),男,博士研究生;
  • 相关文献

参考文献7

二级参考文献38

  • 1李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报,2003,35(6):716-722. 被引量:47
  • 2李杰.随机结构分析的扩阶系统方法(I)扩阶系统方程[J].地震工程与工程振动,1995,15(3):111-118. 被引量:11
  • 3张炳根 赵玉芝.科学与工程中的随机微分方程[M].北京:海洋出版社,1981.. 被引量:1
  • 4Shinozuka M. Probabilistic modeling of concrete structures. Journal of Engineering Mechanics, ASCE, 1972, 98:1433-1451. 被引量:1
  • 5Kleiber M, Hien TD. The Stochastic Finite Element Method. Chishcester: John Wiley & Sons, 1992. 被引量:1
  • 6Hisada T, Nakagiri S, Stochastic finite element method developed for structural safety and reliability. In: Proc.3rd Int Conf on Structural Safety and Reliability, 1981,395-408. 被引量:1
  • 7Ghanem R, Spanos PD. Polynomial chaos in stochastic finite elements. Journal of Applied Mechanics, 1990, 57:197-202. 被引量:1
  • 8Jensen H, Iwan WD. Response of systems with uncertain parameters to stochastic excitation. Journal of Engineering Mechanics, 1992, 118 (5): 1012-1025. 被引量:1
  • 9Elishakoff I, Ben Y J, Shinozuka M. Variational principles developed for and applied to analysis of stochastic beams.Journal of Engineering Mechanics, 1996, 122 (6): 559-565. 被引量:1
  • 10Ren Y J, Elishakoff I, Shinozulm M. Finite element method for stochastic beams based on variational principles. Journal of Applied Mechanics, 1997, 64:664-669. 被引量:1

共引文献75

同被引文献97

引证文献6

二级引证文献12

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈