期刊文献+

电力系统机组组合问题的改进粒子群优化算法 预览 被引量:58

AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM FOR POWER SYSTEM UNIT COMMITMENT
在线阅读 下载PDF
收藏 分享 导出
摘要 机组组合问题是一个大规模的非线性混合整数规划问题.文章首先对机组组合问题的0、1变量进行松弛,应用罚函数方法将此问题转化为一个非线性连续变量的规划问题,并应用改进粒子群优化算法求解.该算法在标准的粒子群优化算法的基础上,每个粒子速度和位置的更新不仅考虑自身个体极值和全局极值的信息,还考虑其它粒子所包含的信息.通过收敛性分析可知,若合适地选择算法的控制参数,该算法能较好地收敛到最优解.算例表明文章所提出的算法具有解的质量高、收敛速度快的优点. Unit commitment is a large scale non-linear hybrid integer programming problem. The authors at first relax the zero-one variables in unit commitment and transform this problem into a non-linear programming problem with continuous variable by penalty function, then this programming problem is solved by improved particle swarm optimization algorithm. On the basis of standard particle swarm optimization algorithm, for the renewal of speed and position of each particle not only the information of its own individual extremum and global extremum should be considered, but also the information of other particles. By means of convergence analysis, it is known that if the control parameter of this algorithm is properly chosen, the presented algorithm can converge to optimal solution. The results of calculation examples show that the solution of the presented algorithm possesses high quality and the high convergence speed.
作者 赵波 曹一家 Zhao, Bo[1]; Cao, Yi-Jia[1]
出处 《电网技术》 EI CSCD 北大核心 2004年第21期 6-10,共5页 Power System Technology
基金 国家自然科学基金,国家自然科学基金
关键词 机组组合 电力系统 粒子群优化算法 算例 混合整数规划 控制参数 优点 大规模 明文 收敛性分析 Algorithms Computer simulation Integer programming Optimization Problem solving Units of measurement
  • 相关文献

参考文献14

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proceedings of IEEE International Conference on Neural Networks[C]. Perth,Australia, 1995, 4: 1942-1948. 被引量:1
  • 2Kennedy J, Eberhart R. A new optimizer using particle swarm theory [A]. Proceeding Sixth International Symposium on Micro Machine and Human Science[C]. IEEE service center, Nagoya, Japan, 1995:39-43. 被引量:1
  • 3Kassabalidis I N, El-Sharkawi M A, Marks R J et al. Dynamic security border identification using enhanced particle swarm optimization [J]. IEEE Transactions on Power Systems, 2002, 17(3): 723-729. 被引量:1
  • 4NakaS, GenjiT, YuraTetal. A hybrid particle swarm optimization for distribution state estimation[J]. IEEE Transactions on Power Systems, 2003, 18(1): 60-68. 被引量:1
  • 5Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[A]. Proceedings of the Congress on Evolutionary Computing[C]. IEEE Service Center,California, USA, 2000: 84-88. 被引量:1
  • 6Kazarlis S A, Bakirtzis A G, Petridis V. A genetic algorithm solution to the unit commitment problem[J]. IEEE Transaction on power systems, 1996, 11(1): 83-92. 被引量:1
  • 7JusteKA, KitaH, TanakaEetal. An evolutionary programming to the unit commitment problem[J]. IEEE Transaction on power systems, 1999, 14(4): 1452-1459. 被引量:1
  • 8Senjyu T, Yamashiro H, Uezato K et al. A unit commitment problem by using genetic algorithm based on unit characteristic classification [A]. Power Engineering Society Winter Meeting[C]. New York,USA, 2002, 1: 58-63. 被引量:1
  • 9王喆,余贻鑫,张弘鹏.社会演化算法在机组组合中的应用[J].中国电机工程学报,2004,24(4):12-17. 被引量:58
  • 10陈皓勇,张靠社.电力系统机组组合问题的系统进化算法[J].中国电机工程学报,1999,19(12):9-13. 被引量:75

二级参考文献30

  • 1韩学山,柳焯.考虑发电机组输出功率速度限制的最优机组组合[J].电网技术,1994,18(6):11-16. 被引量:82
  • 2[1]Huang Y C, Yang H T, Huang C L. Solving the capacitor placement problem in a radial distribution system using tabu search approach [J]. IEEE Trans on Power Systems, 1996, 11(4):1868-1873. 被引量:1
  • 3[2]Kalyuzhny A, Levitin G, Elmakis D, et al. System approach to shunt capacitor allocation in radial distribution systems [J]. Electric Power Systems Research, 2000, 56(1):51-60. 被引量:1
  • 4[3]Sundhararajan S, Pahwa A. Optimal selection of capacitors for radial distribution systems using a genetic algorithm [J]. IEEE Trans on Power Systems, 1994, 9(3): 1499-1506. 被引量:1
  • 5[4]Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 1995. 被引量:1
  • 6[5]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. Proceedings of Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995. 被引量:1
  • 7[6]Yoshida H, Kawata K, Fukuyama Y. A particle swarm optimization for reactive power and voltage control considering voltage security assessment [J]. IEEE Trans on Power Systems, 2000, 15(4):1232-1239. 被引量:1
  • 8[7]Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]. Proc. 1999 ICEC, Washington DC, 1999. 被引量:1
  • 9[8]Eberhart R, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, CA, USA, 2000. 被引量:1
  • 10[9]Baghzouz Y. Effects of nonlinear loads on optimal capacitor placement in radial feeders [J]. IEEE Trans on Power Delivery, 1991, 6(1):245-251. 被引量:1

共引文献228

同被引文献716

引证文献58

二级引证文献629

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏