期刊文献+

AZ31镁合金搅拌摩擦焊接显微组织形成机制 预览 被引量:14

The Microstructures Evolution Mechanism of Friction Stir Welded AZ31 Magnesium Alloy
在线阅读 下载PDF
收藏 分享 导出
摘要 搅拌摩擦焊接显微组织的一个显著特征就是焊核(Weld Nugget)的形成.采用AZ31镁合金为母材,通过金相和透射电镜分析搅拌摩擦焊接焊核的形成机制及接头不同区域的显微组织特征,并建立AZ31镁合金搅拌摩擦焊接的组织演变模型.结果显示,紧靠轴肩生成厚度约为37 μm~47 μm细密组织层.机械热影响区存在部分动态再结晶和较明显的塑性变形晶粒.焊缝底部有一厚约100μm~130 μm的粗大组织层.熔核区的组织比较细小,沿厚度方向晶粒大小不均匀.同时提出一个焊核晶粒细化的简易模型,分析认为焊接过程中热过程和热机械搅拌作用对FSW接头组织的形成起决定性作用. The typical microstructure of the friction stirred weld is the formation of the weld nugget. AZ31 magnesium alloy was friction stir welded and the microstructures and the evolution mechanism of the weld were studied using optical microscopy (OM) and transmission electric spectroscopy (TEM) in this paper. The results show that a very thin layer microstructures of about 37 mu m similar to 47 mu m thickness with fine grains is formed under the shoulder. There exist a partly thermodynamic recrystallization, and superplastic grains appear in the thermo-mechanical affected zone. There is a coarse layer of the weld about 100 mu m similar to 130 mu m thickness near the bottom. The weld nugget is composed of fine, re-crystallization grains, and the grain size is different along the thickness direction. The microstructure evolution mechanism is analyzed and a simple model on weld nugget microstructure evolution is also presented in this paper. The mechanism and the factors on microstructures are theoretically analyzed. The heating and the mechanical stirring play the main role in the microstructure evolution.
作者 张华 林三宝 吴林 冯吉才 Zhang, H;Lin, SB;Wu, L;Feng, JC;
机构地区 哈尔滨工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2005年第7期 1021-1024,共4页 Rare Metal Materials and Engineering
基金 国家高技术研究发展计划(863计划)
关键词 搅拌摩擦焊 AZ31镁合金 焊核 机械热影响区 显微组织 friction stir welding AZ31magnesium alloy weld nugget thermal mechanical affected zone microstructures
  • 相关文献

参考文献6

二级参考文献12

  • 1[1]Stippich, F, Vera, E, Kwolf, G. Friedrich. Chr. Surface and Coatings Technology [J],1998,103~104:29~35 被引量:1
  • 2[2]Yamamoto, A. Watanabe, A. Fukumoto, S. Scripta mater[J],44 2001, 44:1039~1042 被引量:1
  • 3[3]Nakatsugawa, I. Martin, R. Knystautas,E.J. Corrosion Science[J],1996,32:921~927 被引量:1
  • 4[4]Brückner,J. Günzel, R. Richter, E. Maller,Surface and Coatings Technology[J],1998,103~104:227~230 被引量:1
  • 5[5]Yue,T.M. wna A.H. Man,H.C.Scripta mater [J],1999,40:303~311 被引量:1
  • 6[6]Subramanian, R, Sircar,S, Mater. Sci, [J],1991,26P:951~958 被引量:1
  • 7[7]Lunder, O, Lein, J, E, Aune T, Kr, Nisancioglu, K. Corrosion[J],1989,45 (9):741~748 被引量:1
  • 8[8]Hehmann, F, Sommer, F, Jonets, H, et al. Journal of Materials Science[J],1989,24:2 369~2 374 被引量:1
  • 9[9]Suman, C. SAE Transaction [J],1990, 99 (5):849~856 被引量:1
  • 10[10]Baliga, C, B, Tsakiropoulos, P. Materials Science and Technology[J],1993,9: 513~519 被引量:1

共引文献15

同被引文献157

引证文献14

二级引证文献34

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈