期刊文献+

水溶液中六价铬在碳纳米管上的吸附 预览 被引量:28

Adsorption of Hexavalent Chromium Ions on Multi-wall Carbon Nanotubes in Aqueous Solution
在线阅读 下载PDF
收藏 分享 导出
摘要 针对用碳纳米管对水溶液中六价铬的吸附净化进行了研究,考察了溶液浓度、溶液pH值、共存的三价铬离子等因素对吸附行为的影响.实验结果表明,碳纳米管在室温下对于六价铬的吸附量随着平衡浓度的增大而升高,在铬浓度为493.557mg·L^-1时碳纳米管吸附量达到最大值为532.215mg·L^-1;六价铬的浓度在300-700mg·L^-1的范围内,碳纳米管对铬的吸附量变化不大;大于700mg·L^-1时,随着铬的平衡浓度的升高碳纳米管对铬的吸附量降低,铬浓度为961.074mg·L^-1时,碳纳米管吸附量降至194.631mg·L^-1.在pH值为2-7的范围内,碳纳米管对六价铬的吸附量随着溶液pH值的减小而增大;而在碱性条件下,pH值对碳纳米管吸附六价铬的影响不大.溶液中存在三价铬时,碳纳米管对六价铬的吸附量明显降低,表明三价铬与六价铬有竞争吸附.此外,活性炭的对比吸附实验表明,在低浓度时。譬如在六价铬浓度为190mg·L^-1吸附时,碳纳米管对铬的吸附量约为活性炭的6倍;而在高浓度下,譬如六价铬浓度为493mg·L^-1时,碳纳米管对铬的吸附量约为活性炭的2倍. Carbon nanotubes (CNTs) were employed to remove toxic hexavalent chromiumions from aqueous solution. Effects of concentration of hexavalent chromium, solution pH, coexistent trivalent chromium in the solution on the Cr(Ⅵ) adsorption were examined. The results show that the adsorption capacity of Cr(Ⅵ) on CNTs increased with increase of Cr(Ⅵ) concentration, and then reach a plateau between 300-700 mg·L^-1 of Cr(Ⅵ); the maximum value of 532.215 nag Cr(Ⅵ) per g CNTs was achieved at the Cr(Ⅵ) concentration of 493.557 mg·L^-1, and followed by a decrease at still higher concentration of Cr(Ⅵ). The capacity was also significantly affected by the pH value of the solution between 2 and 7, and little change was observed above pH value of 7. Addition of Cr(Ⅲ) into the Cr(Ⅵ) solution could decrease the Cr (Ⅵ) removal capacities because of their competitive adsorption on CNTs. Under the same experimental conditions, CNTs showed an adsorption capacity of Cr(Ⅵ) 6 times as large as the commercial activated carbon at 190 mg·L^-1 of the concentration of Cr(Ⅵ).
作者 裘凯栋 黎维彬 QIU, Kai-Dong LI, Wei-Bin (1Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, P. R. China; 2 Shenzhen, Tsinghua University, Shenzhen 518055, P. R. China)
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2006年第12期 1542-1546,共5页 Acta Physico-Chimica Sinica
关键词 碳纳米管 吸附 六价铬 活性炭 Carbon nanotubes, Adsorption, Cr(Ⅵ), Activated carbon
  • 相关文献

参考文献30

  • 1Mullet,M.; Boursiquot,S.; Ehrhardt,J.J.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,244(1-3):77 被引量:1
  • 2Rana,P.; Mohan,N.; Rajagopal,C.Water Research,2004,38(12):2811 被引量:1
  • 3Kongsricharoern,N.; Polprasert,C.Water Science and Technology,1996,34(9):109 被引量:1
  • 4Kozlowski,C.A.; Walkowiak,W.Water Research,2002,36(9):4870 被引量:1
  • 5Rengaraj,S.; Yeon,K.H.; Moon,S.H.Journal of Hazardous Materials,2001,87(1-3):273 被引量:1
  • 6Aliane,A.; Bounatiro,N.; Cherif,A.T.; Akretche,D.E.Water Research,2001,35(9):2320 被引量:1
  • 7Hafiane,A.; Lemordant,D.; Dhahbi,M.Desalination,2000,130(3):305 被引量:1
  • 8Bohdziewicz,J.Desalination,2000,129(3):227 被引量:1
  • 9Chaudry,M.A.; Ahmad,S.; Malik,M.T.Waste Management,1998,17(4):211 被引量:1
  • 10Tobin,J.M.; Roux,J.C.Water Research,1998,32(5):1407 被引量:1

二级参考文献47

  • 1霍尔等 张永平(译).光合作用[M].北京:科学出版社,1982.22. 被引量:1
  • 2顾其敏 沈仁权.生物化学教程[M].北京:高等教育出版社,1990.334. 被引量:1
  • 3周亚平 周理.物理化学学报 (Wuli Huaxue Xuebao),1997,13(2):119-119. 被引量:1
  • 4He,Z.B.;Chen,J.H.;Liu,D.G.;Tang,H.;Deng,W.;Kuang,Y.F.Mat.Chem.Phys.,2004,85(2-3):396. 被引量:1
  • 5Wang,C.;Wa,J.M.;Wang,X.;Tang,J.M.;Haddon,R.C.;Yan,Y.Nano Lett.,2004,4(2):345. 被引量:1
  • 6Hu,C.G.;Wang,W.L.;Liao,K.J.;Liu,G.B.;Wang,Y.T.J.Phys.Chem.Solids,2004,65(10):1731. 被引量:1
  • 7Pozio,A.;Francesco,M.D.;Cemmi,A.;Cardellini,F.;Giorgi,L.J.Power Sources,2002,105(1):13. 被引量:1
  • 8White,J.H.;Sammells,A.F.J.Electrochem.Soc.,1993,140(2):2167. 被引量:1
  • 9Liu,Z.;Lin,X.;Lee,J.Y.;Zhang,W.;Han,M.;Gan,L.M.Langmuir,2002,18(10):4054. 被引量:1
  • 10Ahn,J.H.;Jane,Y.;Matthew,L.;Liu,H.K.;Dou,S.X.J.Power Sources,2003,119(121):16. 被引量:1

共引文献61

同被引文献578

引证文献28

二级引证文献114

投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈