期刊文献+

双重BP神经网络组合模型在实时数据预测中的应用 预览 被引量:30

The Application of Double BP Neural Network Combined Forecasting Model in Real-time Data Predicting
在线阅读 下载PDF
收藏 分享 导出
摘要 在回归和延时神经网络的基础上,利用非线性组合预测方法的优点,提出一种新的预测模型——双重BP神经网络组合模型模型,选用某660MW机组的主蒸汽流量数据进行学习训练,实例计算结果表明双重BP神经网络组合模型可提高单项预测模型的精度,校核样本的平均相对误差为1.5%,而单独采用回归神经网络和延时神经网络进行预测的平均相对误差分别为2.7%和1.9%,证明双重BP神经网络组合模型具有很高的预测精度,可应用于火电厂实时数据的有效性验证。 As a new data forecasting model, the double BP neural network combined model based on regressive neural network and time-delay neural network was proposed, which has the advantages of nonlinear combined forecasting methods. The model was trained with main steam flow values of one 660MW unit. The calculation results testified that the double BP neural network model improved the forecasting accuracy of a single model. The mean relative forecasting error of checking samples data was 1.5%, while the mean relative forecasting errors of regression neural network and time-delay neural network were 2.7% and 1.9% respectively. It was proved that the double BP neural network combined model had preferable forecasting accuracy and can be applied for validation of real-time data in power plant.
作者 李蔚 盛德仁 陈坚红 任浩仁 袁镇福 岑可法 周永刚 LI Wei, SHENG De-ren, CHEN Jian-hong, REN Hao-ren, YUAN Zhen-fu, CEN Ke-fa, ZHOU Yong-gang (College of Mechanical and Energy Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第17期 94-97,共4页 Proceedings of the CSEE
关键词 双重BP神经网络 实时 组合预测 回归神经网络 延时神经网络 double BP artificial neural network real-time combined forecasting regression neural network time-delay neural network
  • 相关文献

参考文献20

二级参考文献68

共引文献302

同被引文献343

引证文献30

二级引证文献260

投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈