期刊文献+

CWRF模式对夏季降水的集合预报试验研究 预览 被引量:4

Ensemble Forecast Experiment on Precipitation in Summer by CWRF Numeric Model
在线阅读 下载PDF
收藏 分享 导出
摘要 以ISWS/UIUC发展的CWRF数值模式为试验模式,NOAA全球预报系统(GFS)每天4次的实时预报资料作模式初始和边界条件,同时采用NCEP每天发布的0.5°×0.5°全球SST实时分析资料,分别选取不同的云物理参数化、积云参数化、边界层参数化和辐射方案共计8种参数化组合方案,形成了8组、4个时次共计32个成员的集合预报体系,设计了时变权重分配和动态权重分配两种方案,开展了120h的实时集合预报试验。试验结果表明,CWRF对中国区域降水有较好的预报能力;在短期降水预报中,集合成员对积云参数化方案更加敏感;考虑了前期预报误差的动态分配权重技术的集合预报方案能够及时反映模式在不同物理参数化方案下,在不同地方、不同预报时效的预报性能,总体上优于不考虑前期预报误差的时变集合预报方案和单个成员的预报。 Using CWRF numeric model developed by ISWS/UIUC with GFS real forecast data which has 4 times per day and 0.5°×0.5° SST real-time analysis data from NCEP as initial and boundary conditions, adopting 8 group different parameterization schemes from microphysics, cumulus convection, boundary layer and radiation parameterization, an ensemble forecast system which has 32 members was established. Also, the time-variation integration forecast scheme and dynamic weight allocation integration forecast scheme were designed. Based on above forecast system, we experimented on 120 hours real time ensemble forecast. The result showed that CWRF model has good forecast ability for precipitation in China. In short term forecast, the ensemble member is more sensitive to cumulus parameterization. Dynamic weight allocation integration forecast scheme which considered forecast errors can reflect model's forecast capacity in different physical parameterizations, location, and forecast period conditions, on the whole, it has better forecast ability than time-variation integration forecast scheme and any ensemble member.
作者 曾明剑 陆维松 梁信忠 汪学良 ZENG Ming-jian, LU Wei-song, LIANG Xin-zhong, WANG Xue-liang(1. Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. Jiangsu Provincial Observatory, Nanjing 210008, China 3. Illinois State Water Survey, IL 61820, USA ; 4. National Oceanic and Atmospheric Administration/ARL, MD 20910, USA)
出处 《高原气象》 CSCD 北大核心 2008年第6期 1218-1228,共11页 Plateau Meteorology
基金 江苏省气象局科研开放基金项目(200702) 中国气象局气象新技术推广项目(CMATG2005Y07)共同资助
关键词 CWRF模式 降水 集合预报 集成 CWRF Precipitation Ensemble forecast Integration
作者简介 曾明剑(1973-),男,四川彭山人,博士研究生,副研级高工,主要从事数值预报和应用研究 Email:swordzmj@yahoo.com.cn
  • 相关文献

参考文献22

二级参考文献135

共引文献314

同被引文献82

引证文献4

二级引证文献20

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈