期刊文献+

求解非线性算子方程的梯形牛顿法 预览 被引量:3

Trapezium Newton's Method for Nonlinear Operator Equations
在线阅读 下载PDF
收藏 分享 导出
摘要 在Banach空间中研究非线性算子方程F(x)=0的近似求解问题.首先,把实函数数值积分的梯形公式推广到非线性泛函的Bochner积分中来,得到Bochner积分的梯形公式;然后,利用这一公式来构造牛顿迭代法的变形格式,从而得到梯形牛顿法,并在弱条件的α-判据下借助于优函数技巧证明了它的收敛性. The main object of this paper is to investigate the solution of nonlinear operator equation F (x)= 0 in Banach space. First, we generalize the trapezium formula about numerical integral of real function to the Bochner integral of nonlinear functional so that we obtain the trapezium formula of Bochner integral. Then we use the formula to construct modified scheme of Newtonrs iterative method so as to obtain trapezium Newton's method. criterion of weak conditions by means of majorizing Futhermore ,we proved its convergence under function.
作者 薛雅萍 吴开谡 刘晓晶 XUE Ya-ping, WU Kai-su, LIU Xiao-jing (Department of Mathematics and Information Science, Beijing University of Chemical Technology, Beijing 100029, China)
出处 《应用泛函分析学报》 CSCD 2009年第1期 90-96,共7页 Acta Analysis Functionalis Applicata
基金 北京化工大学青年科学基金(QN0622)
关键词 梯形牛顿法 α-判据 优函数 trapezium Newton's method α-criterion majorizing function
  • 相关文献

参考文献12

  • 1Kantorovich L. On Newton's method (In Russian) [J]. Trudy Mat Inst Steklov, 1949, 28(1): 104-144. 被引量:1
  • 2Smale S. Newton's Method Estimates form Data. at One Point[M]. //Ewing R, Gross K, Martin C, et al. The Merging of Disciplines: New Directions in Pure. New York: Spring-Verlag, 1986. 185-196. 被引量:1
  • 3王兴华,韩丹夫.弱条件下的α判据和Newton法[J].计算数学,1997,19(1):103-112. 被引量:13
  • 4苗慧..解非线性方程的若干算法的收敛性分析[D].浙江大学,2006:
  • 5高怀毅..King-Werner迭代法的若干修正及收敛性[D].浙江大学,2003:
  • 6王兴华 郑士明.关于解非线性方程组的King-Werner迭代过程的收敛性.计算数学,1982,(1):70-79. 被引量:3
  • 7Han Danfu, Wang Xinghua. Convergence on a deformed Newton method[J]. Appl Math and Comput, 1998,94:65-72. 被引量:1
  • 8Argyros I K. On Newton's method under mild differentiability conditions and applications [J]. Appl Math Comput, 1999, 102: 177-183. 被引量:1
  • 9Argyros I K. A Newtons-Kantorovich thermo for equation involving n-Frechet differentiable operators and applications in radiative[J]. J Comput Appl Math, 2001, 131: 149-159. 被引量:1
  • 10Yamamoto T. A method for finding sharp error hounds for Newton's method under the Kantorovich assumptions[J]. Numer Math, 1998, 49: 203-220. 被引量:1

二级参考文献11

  • 1王兴华,科学通报,1996年 被引量:1
  • 2王兴华,Contemp Math,1994年,163卷,155页 被引量:1
  • 3王兴华,Proceedings of the Smalefest,1993年 被引量:1
  • 4Huang Zhengda,J Comput Appl Math,1993年,47卷,211页 被引量:1
  • 5王兴华,在点估计下Euler级数,Euler迭代族以及Halley迭代族的收敛性,1990年 被引量:1
  • 6王兴华,中国科学.A,1989年,1卷,34页 被引量:1
  • 7王兴华,科学通报,1980年,数理化专辑,36页 被引量:1
  • 8王兴华,科学通报,1978年,3期,23页 被引量:1
  • 9王兴华,杭州大学学报,1977年,2期,16页 被引量:1
  • 10王兴华,科学通报,1975年,20卷,12期,558页 被引量:1

共引文献14

同被引文献31

  • 1郑琰,刘立山.二元算子方程组的迭代求解方法[J].数学学报,2006,49(5):1033-1038. 被引量:10
  • 2Nashed M Z. Generalized Inverses and Applications[M]. New York: Academic Press, 1976. 被引量:1
  • 3Morozov V A. Methods for Solving Incorretly Posed Problems[M]. New York: Springer, 1984. 被引量:1
  • 4Kaltenbacher B. Some Newton-type methods for the regularization of nonlinear ill-posed problems[J]. Inverse Problems, 1997, 13: 729-753. 被引量:1
  • 5JIN Qinian. A convergence analysis of the iteratively regularized Gauss Newton method under the Lipschitz condition[J]. Inverse Problems, 2008, 24(4). 被引量:1
  • 6Ramm A G, Dynamical Systems Method for Solving Operator Equations[M]. Elsevier, Amsterdam, 2007. 被引量:1
  • 7Hoang N S, Ramm A G. Dynamical systems gradient method for solving ill-conditioned linear algebraic systems[J], http://www.springerlink. com/content/100230/?p= 140e5c38d34c4fdc8e0b6931fl18ae88&pi= 0Acta Applicandae Mathematicae, 2009, 107(1/2/3). 被引量:1
  • 8Hoang N S, Ramm A G. Dynamical systems method for solving linear finite-rank operator equations[J]. Ann Polon Math, 2009, 95: 77-93. 被引量:1
  • 9Klaus-Jochen Engel, Rainer Nagel. A Short Course on Operator Semigroups[M]. USA, Springer, 2006. 被引量:1
  • 10Andrey N Tikhonov, Vasiliy Y Arsenin. Solutions of Ill-posed Problems[M]. WINSTON V H & SONS Washington D C, 1977. 被引量:1

引证文献3

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈