期刊文献+

多反应变量重复测量资料的协方差类型模型应用及SAS实现 预览 被引量:1

Application of covariance pattern model for multivariate repeated measures data and implementation of SAS
在线阅读 免费下载
收藏 分享 导出
摘要 目的 探讨协方差类型模型在多反应变量的重复测量资料分析中的应用方法 为了评价盐酸吡格列酮片治疗2型糖尿病的有效性,以安慰剂为对照,对240例2型糖尿病患者的空腹血糖和餐后2 h血糖重复观测数据进行多反应变量的协方差类型模型分析,对模型的固定效应参数矩阵作最小二乘估计并进行组间比较,同时给出误差效应的方差协方差矩阵,利用SAS中的MIXED过程得以实现结果 2组空腹血糖和餐后2 h血糖的总体差别有统计学意义(P〈0.01);各时间点的差异有统计学意义(P〈0.01);反应变量类别和时间的交互作用有统计学意义(P〈0.05),说明空腹血糖和餐后2 h血糖随时间的变化趋势有所不同;分组和时间的交互作用有统计学意义(P〈0.01),说明2组血糖随时间的变化趋势有所不同.得到固定效应的有关参数的估计值,并给出了曲线图.用药后患者的空腹血糖和餐后2 h血糖随时间变化而变化,且2组曲线的变化趋势是不相同的.试验组曲线随时间迅速下降,而安慰剂组曲线随时间变化非常平缓结论 多反应变量的协方差类型模型可以处理有随机缺失数据的资料,并允许每个观察对象观察次数和观察时间不同,通过指定非独立数据的方差协方差矩阵结构,直接对相关性结构建模.模型不仅考虑了每个反应变量多次重复测量结果之间的相关性,也考虑了各个反应变量之间的相关性,可有效地进行重复测量资料的动态变化趋势分析,统计结论更为可信. Objective Applying covariance pattern model to analyze the multivariate repeated measurement data. Methods In order to assess the effectiveness of Pioglitazone hydrochloride for Type II Diabetes mellitus, 240 patients with Type II Di- abetes mellitus were arranged to randomly take 2 kinds of medicine, Pioglitazone hydrochloride or placebo. Both fasting plasma glucose and 2 h plasma glucose repeated measurement data were analyzed by covariance pattern model. The fixed effect parameters matrix of model coefficients were estimated by using least squares estimation method, the effects between treatment groups were compared and the variance-covariance matrices was also estimated. Corresponding analysis methods were programmed with MIXED procedure of SAS software. Results There was statistically significant difference between the 2 groups of fasting plasma glucose and 2 h plasma glucose overall ( P〈 0.01 ) ; There was statistically significant difference among different time points ( P 〈 0.01 ) ; The interaction effects of response variables category and time was statistically significant (P〈0.05), it indicats that the trend changing with time was different between fasting plasma glucose and 2 h plasma glucose. The interaction effects of group and time was statistically significant (P〈0.01), it indicats that the trend of blood sugar changing with time was different between the 2 groups. Estimated parameters with fixed effect were obtained and graphs were drawn. Both fasting plasma glucose and 2 h plasma glucose changed with time after treatment and the trends between 2 groups were different. Curve of treatment group fell rapidly over time, and curve of placebo group was very gentle changing with time. Conclusion The covariance pattern model for the multivariate repeated measurement data can handle the materials with random missing data, and allow different observed times and observation time for each observation object. It can directly build the model on the correlation structure through specify
作者 张莉娜 ZHANG Li-na.( Department of Biostatisties, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China )
出处 《中国医院统计》 2011年第3期 208-212,共5页 Chinese Journal of Hospital Statistics
关键词 多反应变量 重复测量资料 协方差类型模型 协方差结构 Multivariate Repeated measurement data Covariance pattern model Covariance structure
  • 相关文献

参考文献6

二级参考文献14

  • 1陈长生,徐勇勇.不等距重复观测数据组间比较的正交回归模型[J].中国卫生统计,1996,13(3):1-5. 被引量:8
  • 2Vonesh EF, Chinchilli VM. Linear and nonlinear models for the analysis of repeated measurements[M]. New York: Marcel Dekker, Inc., 1997:32-102. 被引量:1
  • 3SAS Institute Inc. SAS/IML Software[M]. Version 6. 2nd ed. Cary: SAS Institute Inc., 1993: 1-382. 被引量:1
  • 4SAS Institute Inc. SAS/STAT Software: Changes and enhancements through Release 6.11[M]. Cary: SAS Institute Inc., 1996: 1-267. 被引量:1
  • 5Kshirsagar AM, Smith WB. Growth curves[M]. New York: Marcel Dekker, Inc., 1995: 32-115. 被引量:1
  • 6Roy A. Estimating Correlation Coefficient between Two Variables with Repeated Observations using Mixed Effects Models. Biometrical Journal, 2006, 48(2), 286-30I. 被引量:1
  • 7Hamlett A, Ryan L, Serrano-Trespalacios P. Mixed models for assessing correlation in the presence of replication. Journal of the Air & Waste Management Association, 2003, 53,442-450. 被引量:1
  • 8The MIXED procedure. SAS/STAT User's Guide, Version 8, Vol. 2, Chap. 41. SAS Institute Inc, 1999. 被引量:1
  • 9Goldstein H,李晓松.多水平统计模型[M].第1版.成都:四川科学技术出版社,1999.81-84. 被引量:1
  • 10Rasbash J, Browne W, Goldstein H. A user's guide to MLwiN Version2 [R]. Centre for Multilevel Institute of Education University of London, 2001. 151-160. 被引量:1

共引文献8

同被引文献7

引证文献1

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈