期刊文献+

面向按需供给的资源需求滤波估算方法 预览 被引量:2

Filter Based Resource Demand Estimation for On-demand Provision
在线阅读 下载PDF
收藏 分享 导出
摘要 随着按需供给资源使用模式的推广,软件的资源需求己成为资源优化控制的重要属性.监测和估算是目前常用的资源消耗获取方法,但监测工具难以在运行时准确度量短任务的资源需求,回归分析方法又因受到多元共线性和不确定性因素的影响,导致其取值精度下降.本文提出了一种基于Kalman滤波的资源需求估算方法.该方法建立了可度量属性集与不可度量的资源需求问的关联,并利用滤波过滤度量过程中的噪声,达到降低估算误差的目的.基准测试的结果表明、通过合理的设置滤波参数,本方法能够快速逼近真实值,且平均误差小于8%. As the development of demand resource provision, resource demands of software is becoming one of the most important attributes of resource management. Measurement and estimation are widely used in fetching the demands. However, it is hard to measure the short jobPs resource demands by current measurement tools, and the regression methods suffer from the well-studied problem of multicollinearity. Therefore, the estimated results are not confident. In order to improve the estimation precision, we propose a Kalman filter based approach, which can predict the unobservable attribute by observable attributes, and filter the noise existing in the measurement. At last, we test our approach with a benchmark and compare the relative errors, which can demonstrate that with the reasonable parameters, our approach can get close to the real demands quickly, and get the estimated value with the mean error less than 8 %.
作者 黄翔 陈伟 宋云奎 陈志刚 HUANG Xiang, CHEN Wei, SONG Yun-Kui, CHEN Zhi-Gang
出处 《自动化学报》 EI CSCD 北大核心 2014年第5期942-951,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61272013),广东省自然科学基金(S2013040011941)资助
关键词 按需供给 资源需求 滤波 估算 On demand, resource demand, filter, estimation
作者简介 黄翔 中国能源建设集团广东省电力设计研究院博士后,2012年获得中国科学院软件研究所博士学位.主要研究方向为云计算和大数据.本文通信作者.E-mail:huangxiang@gedi.com.cn 陈伟 中国科学院软件研究所助理研究员.2013年获得中国科学院博士学位.主要研究方向为网络分布式计算,软件工程.E-mml:wchen@otcaix.iscas.ac.cn 宋云奎 中国科学院软件研究所软件工程技术研究中心助理研究员。2009年获得中国科学院硕士学位.主要研究方向为网络分布式计算,软件工程.E-mail:songyk@otcaix.iscas.ac.cn 陈志刚 中国能源建设集团广东省电力设计研究院副总工程师.1992年获得华中理工大学硕士.主要研究方向为系统规划.E-mail:chenzhigang@gedi.com.cn
  • 相关文献

参考文献31

  • 1JVM Tool Interface (JVMTI) [Online], available: http://~java.sun.com/j2se/1.5.0/docs/guide/jvmti/, September 3, 2013. 被引量:1
  • 2Jordan M, Czajkowski G, Kouklinski K, Skinner G. Extending a J2EE server with dynamic and flexible resource management. In: Proceedings of the 2004 International Conference on Middleware. Toronto, Canada: ACM, 2004. 439-458. 被引量:1
  • 3Binder W, Hulaas J. A portable CPU-management framework for Java. IEEE Internet Computing, 2004, 8(5): 74-83. 被引量:1
  • 4Hulaas J, Kalas D. Monitoring of resource consumption in Java-based application servers. In: Proceedings of OpenView University Association 10th Workshop. Geneva, Switzerland: University of Geneva, 2003. 1-6. 被引量:1
  • 5Islam S, Keung J, Lee K, Liu A. Empirical prediction models for adaptive resource provisioning in the cloud. Future Generation Computer Systems, 2012, 28(1): 155-162. 被引量:1
  • 6Kalbasi A, Krishnamurthy D, Rolia J, Dawson S. DEC: service demand estimation with confidence. IEEE Transactions on Software Engineering, 2012, 38(3): 561-578. 被引量:1
  • 7Teunissen P J G, Khodabandeh A. BLUE, BLUP and the Kalman filter: some new results. Journal of Geodesy, 2013, 87(5): 461-473. 被引量:1
  • 8游科友,谢立华.网络控制系统的最新研究综述[J].自动化学报,2013,39(2):101-118. 被引量:91
  • 9A Transactional Web e-Commerce Benchmark [Online], available: http://www.tpc.org/tpcw/default.asp, September 3, 2013. 被引量:1
  • 10QoS Oriented B2C Benchmark for Internet Middleware [Online], available: http://forge.ow2.org/projects/jaspte/, September 3, 2013. 被引量:1

二级参考文献215

  • 1Liggins M E, Hall D L, Llinas J. Handbook of Multisensor Data Fusion: Theory and Practice (Second Edition). Boca Raton: CRC Press, 2009. 被引量:1
  • 2Li X R, Zhu Y M, Wang J, Han C Z. Optimal linear esti- mation fusion I: unified fusion rules. IEEE Transactions on Information Theory, 2003, 49(9): 2192-2208. 被引量:1
  • 3Song E B, Zhu Y M, Zhou J, You Z S. Optimal Kalman fil- tering fusion with cross-correlated sensor noises. Automat- ica, 2007, 43(8): 1450-1456. 被引量:1
  • 4Sun S L, Deng Z L. Multi-sensor optimal information fusion Kalman filter. Automatica, 2004, 40(6): 1017-1023. 被引量:1
  • 5Deng Z L, Gao Y, Max) L, Li Y, Hao G. New approach to in- formation fusion steady-state Kalman filtering. Automatica, 2005, 41(10): 1695-1707. 被引量:1
  • 6Hagander P, Wittenmark B. A self-tuning filter for fixed- lag smoothing. IEEE Transactions on Information Theory, 1977, 23(3): 377-384. 被引量:1
  • 7Moir T, Grimble M J. Optimal self-tuning filtering, pre- diction, and smoothing for discrete multiwriable processes. IEEE Transactions on Automatic Control, 1984, 29(2): 128-137. 被引量:1
  • 8Deng Z L, Zhang H S, Liu S J, Zhou L. Optimal and self- tuning white noise estimators with applications to decon- volution and filtering problems. Automatica, 1996, 32(2): 199-216. 被引量:1
  • 9Julier S J, Uhlmann J K. A non-divergent estimation al- gorithm in the presence of unknown correlations. In: Pro- ceedings of the American Control Conference. Albuquerque, USA: IEEE, 1997. 2369-2373. 被引量:1
  • 10Wu D Z, Zhou J, Qu X M. A robust estimation fusion with unknown cross-covariance in distribution systems. In: Proceedings of the 48th IEEE Conference on Decision and Control Jointly with the 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 7603-7607. 被引量:1

共引文献102

同被引文献34

  • 1Hu Dandan, Chen Ningjian, Dong Shilong. A user preference and service time mix-aware resource provisioning strategy for multi-tier cloud services[C] //Proc of AASRI Conference on Parallel and Distributed Computing Systems. 2013:235-242. 被引量:1
  • 2Hulaas J, Binder W. Program transformation for light-weight CPU accounting and control in the Java virtual machine[J] . Higher-Order and Symbol Computation, 2008, 21(1-2):119-146. 被引量:1
  • 3Binder W, Hulaas J. A portable CPU-management framework for Java[J] . IEEE Internet Computing, 2004, 8(5):74-83. 被引量:1
  • 4Zheng Tao, Woodside M. Performance model estimation and tracking using optimal filters[J] . IEEE Trans on Software Engineering, 2008, 34(3):391-406. 被引量:1
  • 5Wang Wei, Huang Xiang, Qin Xiulei, et al. Application-level CPU consumption estimation:towards performance isolation of multi-tenancy Web applications[C] //Proc of the 5th IEEE International Conference on Cloud Computing. [S. l.] :IEEE Press, 2012:439-446. 被引量:1
  • 6Zhang Qi, Cherkasova L, Mathews G, et al. R-Capriccio:a capacity planning and anomaly detection tool for enterprise service with live workloads[C] //Proc of Middleware. 2007:244-265. 被引量:1
  • 7Zhang Qi, Cherkasova L. A regression-based analytic model for dynamic resource provision of multi-tier applications[C] //Proc of the 4th IEEE International Conference on Autonomic Computing. [S. l.] :IEEE Press, 2007:27-36. 被引量:1
  • 8Pacifici G, Segmuller W, Spreitzer M, et al. CPU demand for Web serving:measurement analysis and dynamic estimation[J] . Performance Evaluation, 2008, 65(6-7):531-553. 被引量:1
  • 9Menasce D, Almeida V. Performance by design:computer capacity planning by example[M] . New Jersey:Prentice Hall PTR, 2004. 被引量:1
  • 10Abdi H. Partial least squares regression and projection on latent structure regression[J] . Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(1):97-106. 被引量:1

引证文献2

二级引证文献2

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏