期刊文献+

Toeplitz矩阵填充的中值修正的奇异值阈值算法 预览

A Median Value Modified Singular Value Thresholding Algorithm forToeplitz Martix Completion
在线阅读 下载PDF
分享 导出
摘要 文章提出了Toeplitz矩阵填充的中值修正的奇异值阈值算法.新算法保证每次迭代产生的矩阵都是可行的Toeplitz矩阵,而且通过数值实验进一步验证了新算法在时间和精度上都有较大的优势. A median value algorithm for Toeplitz matrix completion is proposed based on the singular value thresholding algorithm.The completion matrices generated by the new algorithm keep the a feasible Toeplitz structure,and the new algorithm has great advantages in time and precision through numerical experiments.
作者 牛建华 王川龙 NIU Jianhua;WANG Chuanlong(Department of Mathematics,Taiyuan Normal University,Jinzhong 030619,China)
出处 《太原师范学院学报:自然科学版》 2018年第3期1-4,36共5页 Journal of Taiyuan Normal University:Natural Science Edition
基金 国家自然科学基金(11371275) 山西省自然科学基金(201601D011004).
关键词 TOEPLITZ矩阵 矩阵填充 中值 Toeplitz matrix matrix completion median value
作者简介 牛建华(1992一),女,山西吕梁人,太原师范学院数学系在读硕士研究生,主要从事矩阵数据分析与科学计算研究.
  • 相关文献

参考文献2

二级参考文献38

  • 1Amit Y, Fink M, Srebro N, et al. Uncovering shared structures in multiclass classification. In: Processings of the 24th International Conference on Machine Learing. New York: ACM, 2007, 17-24. 被引量:1
  • 2Argyriou A, Evgeniou T, Pontil M. Multi-task feature leafing. Adv Neural Inf Process Syst, 2007, 19:41-48. 被引量:1
  • 3Mesbahi M, Papavassilopoulos G P. On the rank minimization problem over a positive semidefinite linear matrix inequality. IEEE Trans Automat Control, 1997, 42:239 243. 被引量:1
  • 4Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 2000, 41~424. 被引量:1
  • 5Tomasi C, Kanade T. Shape and motion from image streams under orthography: A factorization method. Int J Comput Math Vision, 1992, 9:13~154. 被引量:1
  • 6Cand~s E J, Recht B. Exact matrix completion via convex optimization. Found Comput Math, 2009, 9:717 772. 被引量:1
  • 7Bennett J, Lanning S. The netflix prize. In: Proceedings of KDD Cup and Workshop. California: ACM, 2007, 1-6. 被引量:1
  • 8Cand~s E J, Tao T. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans Inform Theory, 2010, 56:2053 2080. 被引量:1
  • 9Keshavan R H, Montanari A, Oh S. Matrix completion from a few entries. IEEE Trans Inform Theory, 2010, 56: 2980-2998. 被引量:1
  • 10Recht B. A simpler approach to matrix completion. J Mach Learing Res, 2011, 12:3413 3430. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈