白令海西部小区域声传播特征研究 预览 被引量:2

The analysis of acoustic propagation characteristics in the small area west of Bering Sea
在线阅读 下载PDF
收藏 分享 导出
摘要 白令海是连接太平洋、北冰洋唯一要道,经济、军事地位极其重要。利用中国第5次北极科学考察CTD(Conductivity,Temperature,Depth)数据,在分析白令海西部小区域水文环境基础上,结合大陆坡地形,利用UMPE(University of Miami Parabolic Equation)抛物方程模型模拟声传播特征,并利用Bellhop射线声学模型分析其形成的物理机制。陆坡区域受流混合影响,50~350 m形成低温、低盐水团。声波沿陆坡向深海传播时,声能向500 m以上汇聚,次表层50 m左右形成声道,深层为声影区;声波沿陆坡向浅海传播时,50 m左右出现声道,深层传播损失较大,无声影区;"斜坡增强效应"使得声源置于浅水海域时,50 m声道强度大于声源置于深水海域。 The Bering Sea is the only channel connecting the Pacific Ocean and the Arctic Ocean, which is of great economy and military significance. The discussion in this paper is based on the CTD data from Chinese Fifth Arctic Research Expedition, and the characteristics of the area in the west of Bering Sea are analyzed. The acoustic transmis-sion propagation feature is simulated by UMPE model, and Bellhop model is used to explain it. Low temperature and salt water mass exists between the layers of 50-350m over the continental slope, resulted from vertical mixture. When the acoustic wave transmits along the slope from shallow-water to deep water, acoustic energy gathers to the upper 500 meters layer, underwater track appears in about 50 meters, the deep layer is shadow zone; When the acoustic wave transmits in the opposite direction, underwater track appears in about 50 meters, the transmission loss in deep layer is big with no shadow zone existing. Comparing the conditions as the source is putted in shallow water with in deep wa-ter, acoustic channel in 50m of the former is stronger due to “slope swelling phenomenon”.
作者 高飞 张新睿 孙磊 潘长明 李胜全 李佳讯 GAO Fei, ZHANG Xin-rui, SUN Lei, PAN Chang-ming, LI Sheng-quan, LI Jia-xun (1. Naval Institute of Hydrographic Surveying and Charting, Tianjin 300061, China; 2. 95871 Troops of the PLA, Hengyang 421002, Hu'nan, China)
出处 《声学技术》 CSCD 北大核心 2015年第4期306-311,共6页 Technical Acoustics
基金 国家自然科学基金资助项目(41276088)
关键词 白令海 声传播特征 UMPE模型 Bellhop模型 陆坡流 the Bering Sea characteristics of acoustic transmission University of Miami Parabolic Equation model Bellhop model slope current
作者简介 作者简介:高飞(1989-),男,硕士,湖南衡阳人,助理工程师,研究方向为海洋声学。通讯作者:高飞,E-mail:gfei88_lgdx@163.com
  • 相关文献


  • 1马德毅主编..中国第五次北极科学考察报告 首次北极五大区域准同步观测[M].北京:海洋出版社,2013:255.
  • 2Schabetsberger L, Brodeur R D, Ciannelli L, et al. Diel vertical migration and interaction of zooplankton and juvenile walleye poolock (Theragra chalcogramma) at a frontal region near the Pri- bilof Islands, Bering Sea[J]. Journal of Marine Science, 2000, 57(1): 1283-1295. 被引量:1
  • 3夏立平.北极环境变化对全球安全和中国国家安全的影响[J].世界经济与政治,2011(1):122-133. 被引量:31
  • 4潘敏,周燚栋.论北极环境变化对中国非传统安全的影响[J].极地研究,2010,22(4):415-422. 被引量:6
  • 5高郭平 ,赵进平 ,董兆乾 ,侍茂崇 .白令海峡海域夏季温、盐分布及变化[J].极地研究,2004,16(3):229-239. 被引量:9
  • 6王晓宇,赵进平.北白令海夏季冷水团的分布及其年际变化研究[J].海洋学报,2011,33(2):1-10. 被引量:9
  • 7Drucker R, Marint S, Moritz R. Observations of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking Sonar, and salinity/temperature moorings[J]. J Geophys. Res., 2003, 108(2): 3149, doil: 0.1029 / 200LJC001213. 被引量:1
  • 8Mizobata K, Sairoh S I, Wang Jin. Interannual variability of summer biochemical enhancement in relation to mesoscale eddies at the shelf break in the vicinity of the Pribilof Islands, Bering Sea[J]. Deep Sea Researchll, 2008, $5(3): 1717-1728. 被引量:1
  • 9Sean M W, Mark A M, Lisa M M, et al. Waveguide propagation allows range estimates for north pacific right whales in the Bering Sea[J]. Canadian Acoustics/Acoustique canadience, 2004, 32(2): 146-154. 被引量:1
  • 10Stephane G, John K H. Acoustic characteristics of fbrage fish species in the Gulf of Alaska and Bering Sea based on Kirchhoff approximation models[J]. Can. J. Fish. Aquat. Sci., 2004, 60(117): 1839-1850. 被引量:1




  • 1葛人峰,郭景松,于非,张志欣,刁新源,郭炳火.黄、东海陆架海域温度垂直结构类型划分与温跃层分析[J].海洋科学进展,2006,24(4):424-435. 被引量:27
  • 2周艳莲,孙晓敏,朱治林,温学发,田静,张仁华.几种典型地表粗糙度计算方法的比较研究[J].地理研究,2007,26(5):887-896. 被引量:29
  • 3Harry D F. Predicting Sonar Performance Using Observa-tions of Mesoscale Eddies [J]. Journal of the AcousticalSociety of America, 2006, 120(2): 3060-3069. 被引量:1
  • 4David R B, Michael J B. Depth Dependence of Wind-driven, Broadband Ambient Noise in the Philippine Sea[J].Journal of the Acoustical Society of America, 2013,133(1): 62-71. 被引量:1
  • 5Bernard C,James D,William L, et al. Coherent BottomReverberation: Modeling and Comparisons with At-seaMeasurements[J]. Journal of the Acoustical Society ofAmerica, 2004,116(4): 1985-1994. 被引量:1
  • 6Mellerg L E, Robinson A R, Botseas G. Modeled Time Va-riability of Acoustic Propagation Through a Gulf StreamMender and Eddies[J]. Journal of the Acoustical Societyof America, 1990, 87(3): 1044-1054. 被引量:1
  • 7Alexey A S, James F L,Lin Y T. Three-dimensional Cou-pled Mode Analysis of Internal-wave Acoustic Ducts [J].Journal of the Acoustical Society of America, 2014,135(5):2497-2512. 被引量:1
  • 8Martin S, Michaell B P, Paul H, et al. Effects of OceanThermocline Variability on Nonecoherent Underwater Ac-oustic Communications[J]. Journal of the Acoustical So-ciety of America, 2007, 12(4): 1895-1908. 被引量:1
  • 9Laurie T F, Michael D C,John S P. Source Localization inNoisy and Uncertain Ocean Environment[J]. Journal ofthe Acoustical Society of America, 1997, 101(6): 3593-3599. 被引量:1
  • 10Lin J H,Gao T F. Model of Wind-generated AmbientNoise in Stratified Shallow Water[J]. Chinese Journal ofOceanology Limnology, 2005, 23(2): 144 -151. 被引量:1










使用帮助 返回顶部 意见反馈