期刊文献+

SINS非线性自对准中的强跟踪UKF算法设计 被引量:2

Design of a Strong Tracing UKF for Nonlinear Self-Alignment of SINS
收藏 分享 导出
摘要 为了实现噪声不确定和干扰环境下捷联惯导系统(SINS)的快速初始对准,结合无迹卡尔曼滤波(UKF),从强跟踪滤波2个条件出发,提出了一种新的强跟踪UKF算法.该算法充分利用了SINS非线性自对准滤波模型的特点,简化了强跟踪UKF的步骤,很大程度上减小了计算量,提高了算法的实时性.在给出算法流程的同时给出了该强跟踪UKF成立的证明,并根据强跟踪滤波充分条件给出了次优渐消因子求解过程,分析了算法的优越性.最后,通过SINS大方位失准角初始对准仿真和车载试验结果证明了新的强跟踪UKF算法的正确性和优越性. In order to realize fast initial alignment of the strap-down initial navigation system (SINS) in a complex circumstance, a new strong tracking unscented Kalman filter (UKF) was proposed with strict derivation based on the UKF and the two conditions of the strong tracking filter. As this algorithm took full advantage of characteristics of SINS nonlinear self-alignment, the steps of the strong trac'king UKF were simplified so that the calculation was reduced significantly and the real-time performance of the algorithm was improved. The steps of the algorithm were given with proofs. The superiority of the strong tracking UKF was analyzed after the process to calculate the suboptimal fading factor given. The simulation and test of the initial alignment of large azimuth misalignment SINS based on this new algorithm show the validity and superiority of the new strong tracking UKF.
作者 薛海建 王解 郭晓松 周召发 XUE Hai-jian , WANG Jie , GUO Xiao-song , ZHOUZhao-fa(1 State Key Discipline Laboratory of Armament Launch Theory and Technology, the Second Artillery Engineering University, Xi'an 710025, China; 2. The 608 Staff Room of Electronic Engineering Institute, Hefei 230037, China)
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第9期1429-1434,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(41174162)
关键词 捷联惯导系统 初始对准 非线性 强跟踪 无迹卡尔曼滤波 strap-down initial navigation system(SINS) initial alignment nonlinearity trong tracking unscented Kalman filter
作者简介 薛海建(1986-),男,安徽省阜阳市人,博士生,主要从事车载定位定向方面的研究. 郭晓松(联系人),男,教授,博士生导师,电话(Tel.):029-84744202;E-mail:xhaijian2012@126.com.
  • 相关文献

参考文献13

二级参考文献84

共引文献157

同被引文献24

引证文献2

二级引证文献1

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏