期刊文献+

一种新的基于稀疏表示的宽带信号DOA估计方法 预览 被引量:7

A Novel Method of DOA Estimation for Wideband Signals Based on Sparse Representation
在线阅读 免费下载
收藏 分享 导出
摘要 该文提出一种基于稀疏表示的宽带信号波达方向(DOA)估计方法,解决稀疏表示方法在宽带信号DOA估计中由于基矩阵维数过大而使算法存储量和重构计算量大的问题。用单一频点的基矩阵代替频率和角度联合构建的基矩阵,使基矩阵的列数仅相当于一个频点处冗余基矩阵的列数,大大降低了稀疏重构方法的存储量和计算量。该方法首先对各频点的频域数据进行聚焦处理,将不同频率的数据堆叠到参考频率上并建立参考频率处的基矩阵,然后建立聚焦后的稀疏表示模型进行DOA估计,并采用奇异值分解进一步降低算法的运算量,最后给出残差门限的选择方法。该算法不仅适用于非相关信号,也可直接处理相关信号而不需要任何的去相关运算,且具有高的检测概率和估计精度,仿真实验和分析验证了该方法的有效性。 A novel wideband signals Direction-Of-Arrival(DOA) estimation method based on sparse representation is proposed. This algorithm can reduce the storage and calculation of the traditional sparse representation methods in wideband signals process, which is caused by the large dimension of base matrix. The over-complete dictionary is constructed by using one-frequency to replace the 2D combination of frequency and angle. The column number of constructed dictionary only equals to that of single-frequency redundant dictionary. The proposed method first adopts focused thought to stack the different frequency data to the reference frequency and founds the redundant dictionary with a single frequency. Then, a sparse recovery model is established to obtain the DOA estimations,which are coming from following the focus process. At the same time, the Singular Value Decomposition(SVD) is used to summarize each frequency to reduce computation burden further. Finally, an automatic selection criterion for the regularization parameter involved in the proposed approach is introduced. The proposed algorithm can effectively distinguish the correlative signals without any decorrelation processing, and it has higher accuracy and detection possibility. The experiment results indicate that the proposed method is effective to estimate the DOA of wideband signals.
作者 赵永红 张林让 刘楠 解虎 Zhao Yong-hong ,Zhang Lin-rang, Liu Nan, Xie Hu (National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第12期2935-2940,共6页 Journal of Electronics & Information Technology
基金 国家重点实验室基金(914XXX1002) 中央高校基本科研业务费(JB140213)资助课题
关键词 波达方向估计 稀疏表示 宽带信号 相关信号 Direction-Of-Arrival(DOA) estimation Sparse representation Wideband signal Correlative signal
  • 相关文献

参考文献17

  • 1Rübsamen Michael and Pesavento Marius.Maximally robust capon beamformer[J].IEEE Transactions on Signal Processing,2014,62(7):1834-1849. 被引量:1
  • 2Rangarao K V and Venkatanarasimhan S.Gold-MUSIC:a variation on MUSIC to accurately determine peaks of the spectrum[J].IEEE Transactions on Antennas and Propagation,2013,61(4):2263-2268. 被引量:1
  • 3Steinwandt J,Roemer F,and Haardt M.Performance analysis of ESPRIT-type algorithms for non-circular sources[C].IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP),Vancouver,BC,2013:3986-3990. 被引量:1
  • 4Hu N,Ye Z,Xu D,et al..A sparse recovery algorithm for DOA estimation using weighted subspace fitting[J].Signal Processing,2012,92(10):2566-2570. 被引量:1
  • 5Yin Ji-hao and Chen Tian-qi.Direction-of-arrival estimation using a sparse representation of array covariance vectors[J].IEEE Transactions on Signal Processing,2011,59(9):4489-4493. 被引量:1
  • 6沈志博,董春曦,黄龙,赵国庆.基于压缩感知的宽频段二维DOA估计算法[J].电子与信息学报,2014,36(12):2935-2941. 被引量:9
  • 7林波,张增辉,朱炬波.基于压缩感知的DOA估计稀疏化模型与性能分析[J].电子与信息学报,2014,36(3):589-594. 被引量:24
  • 8Malioutov D M,?etin M,and Willsky A S.A sparse signal reconstruction perspective for source localization with sensor arrays[J].IEEE Transactions on Signal Processing,2005,53(8):3010-3022. 被引量:1
  • 9Liu Zi-cheng,Wang Xue-lei,Zhao Guang-hui,et al..Wideband DOA estimation based on sparse representation-an extension of L1-SVD in wideband cases[C].IEEE International Conference on Signal Processing,Communication and Computing (ICSPCC),Kunming,2013:1-4. 被引量:1
  • 10He Zhen-qing,Shi Zhi-ping,Huang Lei,et al..Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J].IEEE Signal Processing Letters,2015,22(4):435-439. 被引量:1

二级参考文献45

  • 1Schmidt R O. Multiple emitter location and signal parameter estimation [J]. IEEE Transactions on Antennas Propagation, 1986, 34(3): 276-280. 被引量:1
  • 2Guo Xian-sheng, Wan Qun, Chang Chun-qi, et al.. Source localization using a sparse representation framework to achieve superresolution [J]. Mulitidimensional Systems and Signal Processing, 2010, 21(4): 391-402. 被引量:1
  • 3Md Mashud Hyder and Kaushik Mahata. Direction-of- Arrival estimation using a mixed L2,0 norm approximation [J]. IEEE Transactions on Signal Processing, 2010, 58(9):4646-4655. 被引量:1
  • 4Malioutov D, Cetin M, and Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022. 被引量:1
  • 5Zhang Shu, Li Yu-mei, and Song Jun-cai. A novel method for DOA estimation based on generalized-prior distribution [C]. 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 2010: 244-247. 被引量:1
  • 6Duarte M F, Wakin M B, and Baraniuk R G. Fast reconstruction of piecewise smooth signals from incoherent projections. Workshop on Signal Processing with Adaptative Sparse. Structured Representations-SPARS'05, Rennes, France, 2005. http://spars05.isisa.fr/ACTES/TS5-3.pdf. 被引量:1
  • 7Donoho D and Huo X. Uncertainty principles and ideal atomic decompositions [J]. IEEE Transactions on Information Theory, 2001, 47(7): 2845-2862. 被引量:1
  • 8Chen Hao-bing, Donoho D L, and Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Compting, 2001, 20(1): 33-66. 被引量:1
  • 9Cadzow J A, Kim Y S, and Shiue D C. General direction-of- arrival estimation: a signal subspace approach. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(1): 31-47. 被引量:1
  • 10Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1

共引文献35

同被引文献42

  • 1刘聪锋,廖桂生.基于空域滤波的方向波数域测向测频新方法[J].电波科学学报,2010(1):60-65. 被引量:5
  • 2冯大航,钱能峰,李晓东,鲍明.频率值加权的宽带波达方向估计算法研究[J].声学技术,2013,0(S1):233-234. 被引量:1
  • 3顾建峰,魏平.基于伪协方差矩阵的频率和角度联合估计算法[J].通信学报,2007,28(8):40-45. 被引量:2
  • 4Petre S, Arye N. Music, maximum likelihood, and cramer-Rao bound [J]. IEEE Transaction on Acous- tics, Speech, and Signal Processing, 1989, 37(5). 720-741. 被引量:1
  • 5Simon F, Holger R. A mathematical introduction to compressive sensing[M]. Boston Birkhauser, 2013. 被引量:1
  • 6Fang J, Shen Y N, Li H B, et al. Super-resolution compressed sensing: an iterative reweighted algo rithm for joint parameter learning and sparse signal reeovery[J]. IEEE Signal Processing Letters, 2014, 21(6): 761- 765. 被引量:1
  • 7Zhao T, Arye N. Sparse direction of arrival estima- tion using co-prime arrays with off grid targets[J]. IEEE Signal Processing Letters, 2014, 21(1): 26- 29. 被引量:1
  • 8Yin J H, Chen T Q. Direction o{-arrival estimation using a sparse representation of array covariance vec- tors[J]. IEEE Transactions on Signal Processing, 2011, 59(9). 4489-4493. 被引量:1
  • 9Dai Jisheng, Xu Xin, Zhao Dean. Direction of-arri val estimation via real-valued sparse representation [J]. IEEE Transactions on Antennas and Wireless Propagation Letters, 2013, 12:376-379. 被引量:1
  • 10Jie C, Huo X M. Theoretical results on sparse rep resentations of multiple-measurement vectors [J]. IEEE Trans on Signal Processing, 2006, 54 (12) : 4634-4643. 被引量:1

引证文献7

二级引证文献3

投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈