期刊文献+

大豆CML家族基因的生物信息学分析 被引量:1

Bioinformatics Analysis of GmCML Genes in Soybean Genome
分享 导出
摘要 CMLs蛋白是一类具有Ca2+结合的EF-hand保守结构域蛋白,广泛参与钙依赖的信号传导途径,在植物生长发育及生物胁迫与非生物胁迫响应中起着重要的作用。通过NCBI和植物基因组注释数据库等筛选并获得了68个大豆GmCML蛋白;分析了所有蛋白的基本特性;通过与拟南芥CMLs基因的进化树分析表明,GmCML家族基因属于8个亚类;对GmCML家族基因进行了染色体定位与重复基因进化关系分析,发现其具有较高的进化速率;序列比对发现GmCML类蛋白含有2~4个保守的EF-hand结构域;利用芯片数据对野生大豆在碱胁迫下的叶和根中的CMLs基因表达模式进行了分析,得到26个GsCML基因在碱胁迫下有显著的差异表达,且在根和叶中的差异表达模式不同,表明这些基因参与植物碱胁迫应答,且具组织表达特异性。 CMLs is a kind of calcium-binding proteins with conserved EF-hand motifs,play an important role in calcium-dependent signaling pathway and play a key role in response to plant development and abiotic and bioticstresses. In this study,we identified and characterized 68 soybean CML through plant genome annotation and NCBI database. Phylogenetic analysis suggested that these Gm CML genes could be classified into eight groups,combining with Arabidopsis CMLs. Furthermore,physical locations and gene duplications showed a higher evolution rate of Gm CML. Sequence alignment confirmed that this family proteins contain 2-4 conserved EF-hand motifs. Expression profiles of all CML transcripts from bicarbonate stress treated G.soja showed that there were 26 differently expressed Gm CMLs. The transcript pattern in leaves and in roots was different.These results suggest that those genes may play important roles in plant environmental stress responses and adaptation,with different function in leaf and root.
作者 陈超 端木慧子 朱丹 刘艾林 肖佳雷 朱延明 CHEN Chao, DUANMU Hui-zi, ZHU Dan, LIU Ai-lin, XIAO Jia-lei, ZHU Yan.ming (Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China)
出处 《大豆科学》 CAS CSCD 北大核心 2015年第6期957-963,共7页 Soybean Science
基金 转基因生物新品种培育重大专项(2011ZX08004-002) 国家自然科学基金(31171578) 黑龙江省高校科技创新团队建设计划(2011TD055) 国家基础科学人才培养基金(J1210069).
关键词 大豆 CMLs EF-HAND 生物信息学 进化分析 Soybean CMLs EF-hand Bioinformatics Evolution analysis
作者简介 陈超(1988-),男,硕士,主要从事植物分子生物学与基因工程研究。E—mail:chenchaochencha009@163.com。 通讯作者:朱延明(1955-),男,教授,博导,主要从事植物分子生物学与基因工程研究。E-mail:ymzhu2001@neau.edu.cn
  • 相关文献

参考文献20

  • 1Day I S, Reddy V S, Shad G A, et al. Analysis of EF-hand-con- taining proteins in Arabidopsis [ J ]. Genome Biology, 2002, 3 (10) :1-24. 被引量:1
  • 2Hashimoto K, Kudla J. Calcium decoding mechanisms in plants [ J ]. Biochimie, 2011,93 : 2054-2059. 被引量:1
  • 3Reddy A S. Calcium: Silver bullet in signaling[ J]. Plant Science, 2001,160:381-404. 被引量:1
  • 4Kretsinger R El, Noekolds C E. Carp muscle caleium-binding pro- tein. II. Structure determination and general description [ J ]. The Journal of BiologicM Chemistry, 1973,248 : 3313-3326. 被引量:1
  • 5Perochon A, Aldon D, Galaud J P, et al. Calmodulin and calm- odulin-like proteins in plant calcium signaling [ J ]. Biochimie, 2011,93 : 2048-2053. 被引量:1
  • 6Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and relatod potential calciumsensor proteins[ J ]. BMC Plant Biology, 2007, 7: 4. 被引量:1
  • 7McCormack E, Braam J. Calmodulins and related potential calci- um sensors of Arabidopsis [ J] . New Phytologist, 2003, 159: 585 -598. 被引量:1
  • 8Delk N A, Johnson K A, Chowdhury N I, et al. CML24, regula- ted in expression by diverse stimuli, encodes a potential Ca2 + sen- sor that functions in responses to abseisicacid, daylength, and ion stress [ J ]. Plant Physiology, 2005,139 : 240-253. 被引量:1
  • 9Dobney S, Chiasson D, Lam P, et aL The calmodulin-related cal- cium sensor CML42 plays a role in tfichome branching[ J]. Jour- nal of Biological Chemistry, 2009,284 : 31647 -31657. 被引量:1
  • 10Magnan F, Ranty B, Charpenteau M, et al. Mutations in AtC- ML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotie stress and alscisic acid [ J ]. Plant Jour-nal, 2008, 56: 575-589. 被引量:1

二级参考文献75

  • 1吕山花,孟征.MADS-box基因家族基因重复及其功能的多样性[J].植物学通报,2007,24(1):60-70. 被引量:19
  • 2Li L, Huang Y, Xia X, Sun Z (2006). Preferential duplication in the sparse part of yeast protein interaction network. Mol Biol Evol 23, 2467-2473. 被引量:1
  • 3Li WH, Yang J, Gu X (2005). Expression divergence between duplicate genes. Trends Genet 21,602-607. 被引量:1
  • 4Liu B, Wendel JF (2003). Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29, 365-379. 被引量:1
  • 5Lynch M, Conery JS (2000). The evolutionary fate and consequences of duplicate genes. Science 290, 1151- 1155. 被引量:1
  • 6Lynch M, Force A (2000). The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459-473. 被引量:1
  • 7Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005). Modeling gene and genome duplications in eukaryotes, Proc Natl Acad Sci USA 102. 5454-5459. 被引量:1
  • 8Makova KD, Li WH (2003). Divergence in the spatial pattern of gene expression between human duplicate genes. Genome Res 13, 1638-1645. 被引量:1
  • 9Masterson J (1994). Stomatal size in fossil plants-- evidence for polyploidy in majority of angiosperms. Science 264, 421-424. 被引量:1
  • 10Moore RC, Purugganan MD (2005). The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8, 122-128. 被引量:1

共引文献12

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈