期刊文献+

小球藻、球等鞭金藻和螺旋藻生物量高光谱成像的可视化研究 预览 被引量:2

Study on the Visualization of the Biomass of Chlorella sp.,Isochrysis galbana,and Spirulina sp.Based on Hyperspectral Imaging Technique
在线阅读 下载PDF
分享 导出
摘要 微藻高效培养是微藻生物能源开发利用的关键和前提,而在营养充足的培养条件下生长迅速但较易受到环境污染和影响,因此微藻生长过程中对其生长状况进行监测意义重大。高光谱成像技术同时拥有丰富物质品质信号的优点和图像包含丰富品质分布空间信息的优点,可为微藻的快速无损检测提供新的方法和手段。分别采集小球藻、球等鞭金藻和螺旋藻三种微藻各45个样本的高光谱图像,并提取样本感兴趣区域(ROI)的平均光谱。利用连续投影算法(SPA)波长优选之后,取30个建模集样本的光谱数据与其相应的生物量建立多元线性回归(MLR)模型,对15个预测集样本的生物量进行预测,小球藻、球等鞭金藻和螺旋藻预测相关系数(r)分别为0.950,0.969和0.961,预测均方根误差(RMSEP)为0.010 2,0.010 7和0.017 1,获得了较好的预测精度。最后,用所建MLR模型对预测集图像上每个像素点的生物量加以预测,采用Matlab图像编程处理将不同的生物量用不同的颜色表示,最终以伪彩图的形式实现藻液生物量的可视化。研究结果表明,高光谱成像技术对小球藻和螺旋藻藻液生物量的可视化效果较好,对球等鞭金藻的预测效果还需要进一步改进。本研究为实现微藻生长信息的快速获取和进一步开展微藻生物质能源利用奠定了一定的研究基础。 Effective cultivation of the microalgae is the key issue for microalgal bio-energy utilization.In nutrient rich culture conditions,the microalge have a fast growth rate,but they are more susceptible to environmental pollution and influence.So to monitor the the growth process of microalgae is significant during cultivating.Hyperspectral imaging has the advantages of both spectra and image analysis.The spectra contain abundant material quality signal and the image contains abundant spatial information of the material about the chemical distribution.It can achieve the rapid information acquisition and access a large amount of data.In this paper,the authors collected the hyperspectral images of forty-five samples of Chlorella sp.,Isochrysis galbana,and Spirulina sp.,respectively.The average spectra of the region of interest(ROI)were extracted.After applying successive projection algorithm(SPA),the authors established the multiple linear regression(MLR)model with the spectra and corresponding biomass of 30 samples,15samples were used as the prediction set.For Chlorella sp.,Isochrysis galbana,and Spirulina sp.,the correlation coefficient of prediction(rpre)are 0.950,0.969 and 0.961,the root mean square error of prediction(RMSEP)for 0.010 2,0.010 7and 0.007 1,respectively.Finally,the authors used the MLR model to predict biomass for each pixel in the images of prediction set;images displayed in different colors for visualization based on pseudo-color images with the help of a Matlab program.The results show that using hyperspectral imaging technique to predict the biomass of Chlorella sp.and Spirulina sp.were better,but for the Isochrysis galbana visualization needs to be further improved.This research set the basis for rapidly detecting the growth of microalgae and using the microalgae as the bio-energy.
作者 蒋璐璐 魏萱 赵艳茹 邵咏妮 裘正军 何勇 JIANG Lu-lu , WEI Xuan, ZHAO Yan-ru, SHAO Yong-ni, QIU Zheng-jun, HE Yong(1. Zhejiang Technology Institute of Economy, Hangzhou 310018, China 2. College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China 3. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China)
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第3期795-799,共5页 Spectroscopy and Spectral Analysis
基金 浙江省自然科学基金项目(LY14C130008) 国家自然科学基金项目(31072247)资助
关键词 小球藻 球等鞭金藻 螺旋藻 高光谱图像 生物量 Chlorella sp. Isochrysis galbana Spirulina sp. Hyperspectral images Biomass
作者简介 蒋璐璐,女,1973年生,浙江经济职业技术学院教授e-mail:abbyu111@sina.com 通讯联系人e-mail:yhe@zju.edu.cn
  • 相关文献

参考文献12

二级参考文献15

  • 1YAO Shi-tong, LU Zhi-jie, JIN Zhou-hao . Chinese Agricultural Science Bulletin , 2011, 27 (10) : 194. 被引量:1
  • 2TIAN You-wen, LI Tianqai, ZHANG Lin . Transactions of the Chinese Society of Agricultural Engineering , 2010, 26(5): 202. 被引量:1
  • 3LIU Fei, FENG Lei, CHAI Rong-yao . Acta Optica Sinica , 2010, 30(2): 585. 被引量:1
  • 4Zhao Y, Xu X, Liu F, et al. Analytica Chimica Acta, 2012, 55(1): 281. 被引量:1
  • 5FENG Lei, CHEN Shuang-shuang, PENG Bin . Transactions of the Chinese Society of Agricultural Engineer- ing , 2012, 28(1): 139. 被引量:1
  • 6Xu G L, Zhang F L, Shah S G. Patten Recognition Letters, 2011, 32(11): 1584. 被引量:1
  • 7PENG Yan-ying, SUN Xu-dong, LIU Yan-de . Laser ~ Infrared , 2010, 40(6): 586. 被引量:1
  • 8QIAN De-xiang, PAN Xue-qin, ZHAO Qian . Remote Sensing For Land ~>~ Resources , 2004, 2: 1. 被引量:1
  • 9CAO Wen-xi, YANG Yue-zhong, WANG Gui-fen . Journal of Tropical Oceanography , 2010, 29(2) : 17. 被引量:1
  • 10GAN Fu-ping, WANG Run-sheng . Remote Sensing For Land 6~ gesourcestl : WEI Wei, LI Zeng-yuan. Forest Research, 2011, 24(3): 300. 被引量:1

共引文献5

同被引文献18

引证文献2

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈