期刊文献+

风力机叶片挥舞和摆振的位移时间序列的分形特性

The Fractal Characteristics of Out-of-plane and Inplane Displacement Time Series in Wind Turbine
分享 导出
摘要 为了研究风力机叶片挥舞和摆振的位移时间序列具有分形特征,基于数学形态学的分形维数计算方法,证明风力机叶片挥舞和摆振的位移时间序列具有标度不变性;通过分析长程相关性与自相似性的关系,由Hurst指数证实上述位移时间序列具有自相似性。理论分析和计算结果表明:挥舞和摆振的位移时间序列具有自相似特征,为采用分形理论研究风力机叶片动态特性奠定了数学基础,所揭示的时间序列整体与局部之间关系以及其自相似性,是基于挥舞和摆振位移时间序列数据进行风力机叶片故障诊断的技术支撑。 In order to clarify whether or not the wind turbine out-of-plane and in-plane displacement time series is of fractal characteristics,a fractal dimensional estimation method based on mathematics morphology was applied to validate the scale invariance. By analyzing the relationship between long range dependency and self-similarity,the self-similarity of the signal in the out-of-plane and in-plane displacements was confirmed by calculating the Hurst index.The multi-fractal feature was also validated by analyzing the partial fractal character of the out-of-plane and in-plane displacements in the wind turbine. Theoretical analysis and simulation results proved that the out-of-plane and inplane displacements possess fractal characteristics. This study is expected to lay a mathematical foundation for studying the dynamics of wind turbine blades,and the presented relationship between the whole and local time series and self-similarity are the fundamental for predicting the wind turbine machine fault using fractal theory.
作者 李倩倩 李春 杨阳 叶柯华 LI Qian-qian;LI Chun;YANG Yang;YE Ke-hua;School of Energy and Power Engineering,University of Shanghai for Science and Technology;
出处 《热能动力工程》 CAS CSCD 北大核心 2017年第3期108-113,共6页 Journal of Engineering for Thermal Energy and Power
基金 国家自然科学基金资助项目(51176129) 上海市科委项目资助(13DZ2260900)
关键词 风力机叶片 挥舞和摆振 位移时间 分形特性 wind turbine blade flapwise edgewise fractal self-similarity
作者简介 李倩倩(1989-),女,山东泞宁人,上海理工大学硕士研究生. 通讯作者:李春(1963-),男,北京人,上海理工大学教授、博导.
  • 相关文献

参考文献8

二级参考文献75

共引文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈