期刊文献+

音圈电机驱动的柔性定位平台设计与控制 预览 被引量:2

Design and Control of a Flexible Positioning Stage Driven by Voice Coil Motors
在线阅读 下载PDF
收藏 分享 导出
摘要 设计了一种二自由度柔性微定位平台,该平台主要由音圈电机和柔性铰链机构等组成.采用直角柔性铰链组成的双平行四杆机构对称安置,以实现平台的大行程和运动解耦,工作行程可达2,mm以上,定位精度可达纳米级.设计空间支撑机构保证其承载能力.对微定位平台进行了结构设计和承载能力等特性分析.考虑到该定位平台动态行为的特点,采用遗传算法优化的BP神经网络组合辨识方法对系统模型进行了辨识,克服了神经网络对复杂系统动态行为辨识存在的缺陷.基于神经网络PID复合逆控制方法对微定位平台进行控制,通过实验对辨识和控制方法进行了验证,结果表明遗传算法优化的神经网络辨识方法与神经网络PID复合逆控制方法适用于该音圈电机驱动的柔性微定位平台系统的实际应用. A flexible micro positioning stage with 2-DOF driven by voice coil motors has been designed.The stage mainly contains voice coil motors and flexible hinge mechanism.A double parallel four-bar linkage composed of right angle flexible hinges was placed symmetrically in order to achieve a large motion stroke and motion decoupling.Its working stroke can reach more than 2,mm and positioning accuracy can reach the nanometer level.The space support mechanism was designed to ensure its carrying capacity.The structural design,bearing capacity and dynamic characteristics of the micro positioning stage were analyzed.Considering the characteristic of the dynamic behavior of the positioning stage,the BP neural network identification method optimized by genetic algorithm was used to identify the system model,which overcame the shortcomings of the neural network in dynamic behavior identification of complex system.Then the neural network PID compound inverse control method was applied to control the sys-tem.Experiments were carried out to verify the identification and control methods.The experimental results show that the neural network identification method optimized by genetic algorithm and the neural network PID compound inverse control method are suitable for the practical application of the flexible micro positioning system driven by voice coil motors.
作者 田延岭 包亚洲 王福军 蔡坤海 杨成娟 张大卫 Tian Yanling1,Bao Yazhou1,Wang Fujun1, 2,Cai Kunhai1,Yang Chengjuan1,Zhang Dawei1(1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education,Tianjin University, Tianjin 300350,China;2. Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology,Guangzhou 510641,China)
出处 《天津大学学报:自然科学与工程技术版》 CSCD 北大核心 2017年第10期1070-1076,共7页
基金 国家自然科学基金资助项目(51675376,51675371,51675367,51275337) 欧盟2020地平线H2020-MSCA-RISE-2016项目(734174) 欧盟第七框架生物医疗机器人项目(612641) 欧盟2020地平线和科技部重点研发项目(S2016G4501,644971) 特种车辆及其传动系统智能制造国家重点实验室开放课题项目(GZ2016KF007) 广东省精密装备与制造技术重点实验室开放课题项目(PEM201602)~~
关键词 微定位平台 特性分析 辨识 控制 micro positioning stage characteristics analysis identification control
作者简介 田延岭(1974-),男,教授,meytian@tju.edu.cn. 通讯作者:王福军,wangfujun@tju.edu.cn.
  • 相关文献

参考文献6

二级参考文献42

  • 1谭永红.基于BP神经网络的自适应控制[J].控制理论与应用,1994,11(1):84-88. 被引量:75
  • 2梁军,符雪桐.自适应PID控制:Ⅰ.基本原理与算法[J].浙江大学学报:自然科学版,1994,28(5):523-529. 被引量:12
  • 3汪祖媛 章劲松 庄镇泉.遗传算法的应用研究进展[J].中国科学技术大学学报,1998,28(4):488-493. 被引量:1
  • 4焦李成.神经网络系统理论[M].西安:西安电子工业大学出版社,1993.268-280. 被引量:30
  • 5Omatu S, Yoshioka M. Self-tuning neuro-PID control and applications, systems, man, and cybernetics, 1997 Computational Cybernetics and Simulation, 1997 IEEE International Conference on, 1985-1989 被引量:1
  • 6Chu Shengyuan, Teng Chingcheng. Tuning of PID controllers based on gain and phase margin specifications using fuzzy neural network. Fuzzy Sets and Systems, 1999(101): 21-30 被引量:1
  • 7Bennett S. (1993a). A history of control engineering 1930-1955. Peter peregrinus. Stevenage 被引量:1
  • 8Bennett S. (1993b). Development of the PID controller. IEEE Control Systems, 13:58-65 被引量:1
  • 9Astrom K J, Albertos P, Quevedo J. PID control. Control Engineering Practice. 2001,9: 1159-1161 被引量:1
  • 10Astrom K J and Hagglund T. The future of PID control. Control Engineering Practice, 2001,9: 1163-1175 被引量:1

共引文献132

同被引文献20

引证文献2

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈