期刊文献+

云环境下面向跨域作业的调度方法 预览

A Scheduling Strategy for Jobs Across Geo-Distributed Datacenters in Cloud Computing
在线阅读 下载PDF
收藏 分享 导出
摘要 云环境下,因数据局部性或是任务对资源的特殊偏好,一个作业所包含的任务往往需要在不同的数据中心局点上运行,此类作业称为跨域作业.跨域作业的完成时间取决于最慢任务的执行效率,即存在木桶效应.针对各域资源能力异构条件下不合理的调度策略导致跨域作业执行时间跨度过长的问题,本文提出一种面向跨域作业的启发式调度方法 MIN-Max-Min,优先选择期望完成时间最短的作业执行.通过实验表明,与先来先服务的策略相比,该方法能将跨域作业平均执行时间跨度减少40%以上. In cloud computing,tasks in a job often need to run on different datacenters due to the input data locality or special preference for resources,that is,the job runs across geo-distributed sites. The different tasks in a job have to be scheduled in different domain( data center) to execute for their personalization requirements,so the job completion time depends on the slowest task,which is called"barrel effect". As geo-distributed scheduling strategy without regard to heterogeneous resources leads too long execution time span,this dissertation proposes an optimization strategy for geo-distributed scheduling named M IN-M ax-M in. The strategy gives priority to select the expectation shortest completion job to execute by heuristic rule. Experiments showthat compared with first come first service strategy,the strategy can reduce cross domain average execution time span to less than 40% under the simulation load.
作者 李焱 郑亚松 李婧 朱春鸽 刘欣然 LI Yan;ZHENG Ya-song;LI Jing;ZHU Chun-ge;LIU Xin-ran;National Computer Network Emergency Response Technical Coordination Center;China Braille Press;
出处 《电子学报》 CSCD 北大核心 2017年第10期2416-2424,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61402464,No.61602467)
关键词 云计算 跨域数据中心 跨域作业 cloud computing geo-distributed data centers jobs across geo-distributed data centers
作者简介 李焱男,1984年2月生,湖北随州人.2016年在中国科学院计算技术研究所获工学博士学位.主要研究方向为分布式计算、云计算等.E-mail:liyan@ncic.ac.cn;郑亚松男,187年9月生,河南濮阳人.2014年在中国科学院计算技术研究所获工学博士学位.现在国家互联网应急中心工作,主要研究方向为大数据分析.E-mail:zys-2009@163.com
  • 相关文献

参考文献4

二级参考文献171

  • 1张伟哲,田志宏,张宏莉,何慧,刘文懋.虚拟计算环境中的多机群协同调度算法[J].软件学报,2007,18(8):2027-2037. 被引量:9
  • 2Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009,25(6):599-616. [doi: 10.1016/j.future.2008.12. 0ou. 被引量:1
  • 3Kansal A, Zhao F. Fine-Grained energy profiling for power-aware application design. SIGMETRICS Perforrnanee Evaluation Review, 2008,36(2):26-31. [doi: 10.1145/1453175.1453180]. 被引量:1
  • 4Barroso LA, Holzle U. The case for energy-proportional computing. Computer, 2007,40(12):33-37. [doi: 10.1109/MC.2007.443]. 被引量:1
  • 5Lin C, Tian Y, Yao M. Green network and green evaluation: Mechanism, modeling and evaluation. Chinese Journal of Computers, 2011,34(4):593-612 (in Chinese with English abstract). [doi: 10.3724/SP.J.1016.2011.00593]. 被引量:1
  • 6Wu Q, Xiong GZ. Adaptive dynamic power management for non-stationary self-similar requests. Yore-hal of Software, 2003,16(8) 1499-1505 (in Chinese with English abstract), http://www.jos.org.crd1000-9825/16/1499.htm [doi: 10.1300/jos161499]. 被引量:1
  • 7Costa GD, Gelas JP, Georgiou Y, Lefevrc L, Orgerie AC, Pierson JM, Richard O, Sharma K. The green-net framework: Energy efficiency in large scale distributed systems. In: Mei A, ed. Proe. of the Int'l Syrup. on Parallel and Distributed Processing. Piscataway: IEEE Computer Society, 2009. l-8. Idol: 10.1109/IPDPS.2009.5160975]. 被引量:1
  • 8Blume H, Livonius JV, Rotenberg L, Noll TG, Bothe H, Brakensiek J. OpenMP-Based paraUelization on an MPcore multiprocessor platforrn--A performance and power analysis. Journal of Systems Architecture, 2008,54(11): 1019-1029. [doi: 10.1016/j.sysare. 2008.04.001 ]. 被引量:1
  • 9Venkataehalam V, Franz M. Power reduction techniques for microprocessor systems. ACM Computing Surveys, 2005,37(3): 195-237. [doi: 10.1145/1108956.1108957]. 被引量:1
  • 10Lee KG, Veeravalli B, Viswanathan S. Design of fast and efficient energy-aware gradient-based scheduling algorithms for heterogeneous embedded multiprocessor systems. IEEE Trans. on Parallel and Distributed Systems, 2009,20(1):1-12. [doi: i0.1109frPDS.2008.55]. 被引量:1

共引文献162

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈