期刊文献+

用于盐湖卤水镁锂分离的纳滤技术研究进展 预览

Nanofiltration Technology Used for Separation of Magnesium and Lithium from Salt Lake Brine:a Survey
在线阅读 免费下载
收藏 分享 导出
摘要 作为“推动世界前进的重要元素”的能源金属,锂对国民经济的发展具有重要的战略意义。目前各行业如玻璃、电器和制药等对锂资源的需求量都大幅提高,因此对锂资源的提取和储备至关重要。相比于传统矿石提锂的方法,从盐湖卤水中提锂不需要大量的药剂投入,生产成本大幅降低,因此从盐湖卤水中提取锂资源成为获取锂资源的重要途径。盐湖中镁锂共生存在,镁和锂化学性质相似且它们的离子水合半径差异较小,要实现盐湖高效提锂首先需要解决镁锂分离困难的问题。目前,用于盐湖镁锂分离的方法有很多,但这些工艺存在一些缺陷,如能源消耗大,经济效益低、对环境不友好或不适用于高镁锂比盐湖等。纳滤是一种介于超滤与反渗透之间的压力驱动膜分离技术,纳滤膜因特殊的孔径范围和荷电性质,能有效分离单价、二价及多价离子,在盐湖卤水的镁锂分离领域表现出显著优势。因此,纳滤分离技术成为一种新兴的镁锂分离手段,被国内外研究者视为今后镁锂分离研究的一个重要方向。研究表明,纳滤膜的分离机理主要包括静电排斥和空间位阻效应,溶质在分离过程中除了受到溶质尺寸与孔径的影响,膜表面的电荷性质对溶质的分离起到了极大的作用。目前,用于镁锂分离的多为商业化纳滤膜,一般带有负电。由于镁锂的离子水合半径非常接近,因此在膜分离过程中孔径筛分作用影响较小,膜分离镁锂主要通过静电排斥来实现。近年来的研究结果表明,荷正电纳滤膜在镁锂分离过程中表现出优异的镁锂选择分离性能。由静电排斥效应可知,荷正电纳滤膜在分离镁和锂的过程中,膜对二价阳离子Mg 2+的排斥作用明显高于一价阳离子Li+,因此可使一价阳离子Li+更容易透过膜进入渗透液,而二价阳离子Mg 2+则被截留。本文从盐湖锂资源的分布和提取的角度出发,� As an energy metal that“pushes the world forward”,lithium plays a significant role in the development of the national economy.Currently,there has been consistent growth in demand for lithium resources of various industries like glass,electrical appliances and pharmaceuticals,etc.Hence,it is of great importance in extraction and storage of lithium resources.Compared with the traditional method of extracting lithium from ores,extracting lithium from salt lake brine show notable superiority,because it is free for large amount of chemical input,and economical with substantially reduced cost,which makes it become a primary way for achieving lithium resources.Unfortunately,lithium and magnesium exist as a symbiosis in the salt lake brine,and the chemical properties of magnesium and lithium are similar with small difference in their ionic hydration radius.As a result,the problem of separating magnesium and lithium must be figure out first,in order to achieve high-efficiency lithium extraction from salt lakes.Presently,there are many ways for separating magnesium and lithium from salt lake.Nevertheless,these methods still suffer from large energy consumption,low economic benefit,environmental unfriendliness,and unfriendly unavailability for high magnesium-lithium ratio salt lake.Nanofiltration(NF)is a pressure-driven membrane separation technique between ultrafiltration and reverse osmosis.Thanks to the special pore size range and charge properties of nanofiltration membranes,monovalent,divalent and multivalent ions can be separate effectively.Consequently,nanofiltration technique has become an emerging method for magnesium and lithium separation,and shows remarkable advantage in the field of separation of magnesium and lithium in brine of salt lake,which is regarded as an important research direction by researchers at home and abroad.Research results show that the separation mechanism of NF membrane mainly includes electrostatic repulsion and steric resistance.In addition to the impact of solute size and pore size,t
作者 徐萍 钱晓明 郭昌盛 徐志伟 赵立环 买魏 李静 田旭 朵永超 XU Ping;QIAN Xiaoming;GUO Changsheng;XU Zhiwei;ZHAO Lihuan;MAI Wei;LI Jing;TIAN Xu;DUO Yongchao(State Key Laboratory of Separation Membranes and Membrane Processes,School of Textiles,Tianjin Polytechnic University,Tianjin 300387)
出处 《材料导报》 EI CAS CSCD 北大核心 2019年第3期410-417,共8页 Materials Review
基金 国家自然科学基金(U1607117) 天津市自然科学基金(16JCZDJC36400).
关键词 盐湖卤水 锂资源 镁锂分离 纳滤 膜分离 salt lake brine lithium resources separation of magnesium and lithium nanofiltration membrane separation
作者简介 徐萍,2016年6月毕业于安徽工程大学,获得工学学士学位。现为天津工业大学纺织学院研究生,在钱晓明教授和徐志伟教授的指导下进行研究。目前主要研究领域为石墨烯改性分离膜;钱晓明,教授,博士研究生导师。1985年毕业于天津纺织工学院,1988年获天津纺织工学院工学硕士学位,2005年获香港理工大学博士学位。目前主要从事“非织造材料与工程”、“服装工效学”方面的教学科研工作。多年来,主持研究天津市21世纪青年基金、天津市自然科学基金等科研项目多项,参加研究国家863项目、中石化项目、香港科技发展基金项目等科研项目多项;先后在European Journal of Applied Physiology、《纺织学报》、《天津纺织工学院学报》、《非织造布》、《纺织导报》等学术期刊和国际性学术年会上发表论文80余篇;徐志伟,博士,教授,博士研究生导师。2007年获哈尔滨工业大学化学工程与技术专业博士学位,2007年8月进入天津工业大学,主要从事石墨烯改性分离膜、碳纤维复合材料界面改性工作。先后参加了863计划课题、国家自然基金重点项目、国防预研和天津市自然基金等多项科研项目,主持完成天津市自然基金1项和博士后基金2项,承担国家自然基金3项,获省部级科技奖2项,在国内外重要学术期刊和会议上以第一作者或通讯作者发表SCI/EI收录论文90余篇,获授权发明专利6项,论文已被引用1 500余次。
  • 相关文献
投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈