期刊文献+

一种优化树状模型的肝脏自动分割方法 预览

An Automatic Segmentation Method of Liver with Optimized Tree Model
在线阅读 下载PDF
分享 导出
摘要 针对CT图像的复杂性与肝脏形态的多样性,提出一种优化的肝脏自动分割方法。通过基于部件共享池的混合树状模型(TSPM)捕获肝脏边界的拓扑形态变化,利用凹凸点算法根据肝脏形变自动筛选TSPM中的关键点,避免冗余点对肝脏边界的错误定位,并将不同颜色空间应用于肝脏图像分割中提高分割精度。实验结果表明,与现有分割方法相比,优化方法可获得更准确的肝脏分割结果。 Aiming at the complexity of CT images and the diversity of liver morphology,an automatic optimized liver segmentation method is proposed.Through a hybrid tree model based on the shared pool of components,called TSPM,the topological changes of the liver boundary can be captured.The proposed Convex Concave Point(CCP) algorithm can automatically screen out key points to avoid the misalignment of redundant points on the liver boundary.It applys different color spaces to liver image segmentation to improve segmentation accuracy.Experimental results show that compared with the existing segmentation method,the optimized method can obtain more accurate liver segmentation results.
作者 周丽芳 王璐 李伟生 雷帮军 许志 ZHOU Lifang;WANG Lu;LI Weisheng;LEI Bangjun;XU Zhi(College of Software Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;College of Computer Science and Technology, Chongqing University of Posts and Telecommunications,Chongqing 400065,China;College of Computer and Information Technology,China Three Gorges University,Yichang,Hubei 443002,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第2期226-232,共7页 Computer Engineering
基金 国家自然科学基金(61100114,U1401252) 重庆市自然科学基金(cstc2015jcyjA40011) 重庆市研究生科研创新项目(CYS18247) 水电工程智能视觉监测重点实验室开放基金(2017SDSJ02)。
关键词 肝脏分割 可变形部件模型 树状模型 凸凹点算法 颜色空间 liver segmentation Deformable Part Model(DPM) tree model Concave Convex Point(CCP) algorithm color space
作者简介 周丽芳(1975-),女,副教授,主研方向为机器视觉、模式识别, E-mail:zhoulf@cqupt.edu.cn;王璐,硕士研究生;李伟生,教授;雷帮军,教授;许志,学士
  • 相关文献

参考文献2

二级参考文献37

  • 1薛志东,隋卫平,李利军.一种SVM与区域生长相结合的图像分割方法[J].计算机应用,2007,27(2):463-465. 被引量:8
  • 2Nyirenda G. Kim J, Wen Lingfeng, et al. Automated Segment- ation of Tumour Changes in Temporal PET-CT Data[C]//Proc. oflSBl'12. [S. 1.]: IEEE Press, 2012: 1699-1702. 被引量:1
  • 3Salah M B, Mitiche A, Ayed 1 B. Multiregion Image Segment- ation by Parametric Kernel Graph Cuts[J]. 1EEE Transactions on Image Processing, 2011, 20(2): 545-557. 被引量:1
  • 4Boykov Y, Veksler O, Zabih R. Fast Approximate Energy Minimization via Graph Cuts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 200 I, 23( I 1): 1222-1239. 被引量:1
  • 5Kroon D, Slump C H. Coherence Filtering to Enhance the Mandibular Canal in Cone-beam CT Data[C]//Proc. of Annual Symposium on IEEE-EMBS'09. Enschede, the Netherlands: [s. n.], 2009: 41-44. 被引量:1
  • 6Li Chunming, Xu Chenyang, Gui Changfeng. Distance Regularized Level Set Evolution and Its Application to Image Segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254. 被引量:1
  • 7MANSOOR A, BAGCI U, XU Z, et al. A generic approach to pathological lung segmentation[J]. IEEE Transactions on Medical Imaging, 2014, 33(12): 2293-2310. doi: 10.1109/TMI. 2014.2384693. 被引量:1
  • 8WANG Nana and CHEN Shuyue. Research progress of lung parenchyma segmentation techniques based on CT images [J] Electronic Test. 2012(4): 38-43. doi: 10.3969/j.issm1000-8519.2012.04.009. 被引量:1
  • 9CHEN Qi, XIONG Boli, LU Jun, et al. Improved two- dimensional Otsu image segmentation method and faust recursive realization[J]. Journal of Electronics & Information Techuology, 2010, 32(5): 1100-1104. doi: 10.3724/SP.J.11.16. 2009.00627. 被引量:1
  • 10JIA Tong, MENG Lu, ZHAO Dazhe, et al. Automatic lung parenchyma segmentation on CT image[J]. Journal of Northeastern University (Natural Science), 2008, 29(7): 965-968. doi: 10.3321/j. issn:1005-3026.2008.07.014. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈