期刊文献+

Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India 预览

在线阅读 下载PDF
收藏 分享 导出
摘要 The relation between the water discharge (Q) and suspended sediment concentration (SSC) of the River Ramganga at Bareilly, Uttar Pradesh, in the Himalayas, has been modeled using Artificial Neural Networks (ANNs). The current study validates the practical capability and usefulness of this tool for simulating complex nonlinear, real world, river system processes in the Himalayan scenario. The modeling approach is based on the time series data collected from January to December (2008-2010) for Q and SSC. Three ANNs (T1-T3) with different network configurations have been developed and trained using the Levenberg Marquardt Back Propagation Algorithm in the Matlab routines. Networks were optimized using the enumeration technique, and, finally, the best network is used to predict the SSC values for the year 2011. The values thus obtained through the ANN model are compared with the observed values of SSC. The coefficient of determination (R2), for the optimal network was found to be 0.99. The study not only provides insight into ANN modeling in the Himalayan river scenario, but it also focuses on the importance of understanding a river basin and the factors that affect the SSC, before attempting to model it. Despite the temporal variations in the study area, it is possible to model and successfully predict the SSC values with very simplistic ANN models.
出处 《国际泥沙研究:英文版》 SCIE 2019年第2期95-107,共13页 International Journal of Sediment Research
作者简介 Corresponding author:Mohd Yawar Ali Khan.E-mail address:yawar@mail.tsinghua.edu.cn.
  • 相关文献
投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈