期刊文献+

一种去除遥感影像混合噪声的集成BM3D方法

An Integrated BM3D Method for Removing Mixed Noise in Remote Sensing Image
收藏 分享 导出
摘要 BM3D(block matching and 3D filtering)是一种有效的高斯噪声去除方法,但对遥感影像中常含有的高斯和脉冲混合噪声去除效果具有局限性;而集成方法是去除混合噪声的有效方式。针对BM3D去噪的缺点,结合其去噪优势,研究发展了一种集成BM3D方法,并改进了一种噪声量估算方法M-Liu法,用于先验噪声估算,作为算法的输入参数。算法验证结果表明,集成BM3D法具有较好的去噪特性,能兼顾影像噪声去除和细节信号的保留,优于同类方法,可为图像去噪提供一种新的方法,对于遥感影像后期应用性研究具有一定的意义。 BM3D(block matching and 3D filtering) method is an effective Gaussian noise removing method, but it shows limitation when removing Gaussian and impulse mixed noise in remote sensing images. The integrated method is a more effective way to remove mixed noise. In order to make full use of the advantages of BM3D method, an improved integration method(integrated BM3D method) has been developed. And a modified method M-Liu method is raised and used for estimating the priori noise level as an input parameter for the integrated BM3D method. According to algorithm validation, this paper draws the conclusion that the integrated BM3D method, taking the removal of image noise and the retention of detail signals into account, has good denoising performance. The method can be used to provide a new method for image denoising, and it is useful for the later application of remote sensing image.
作者 赵洪臣 周兴华 彭聪 刘永学 张家发 陈义兰 ZHAO Hongchen;ZHOU Xinghua;PENG Cong;LIU Yongxue;ZHANG Jiafa;CHEN Yilan(The First Institute of Oceanography, MNR, Qingdao 266061, China;South China Sea Marine Survey and Technology Center, SOA, Guangzhou 510300, China;School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China;Collaborative Innovation Center for the South China Sea Studies, Nanjing 210023, China)
出处 《武汉大学学报:信息科学版》 EI CSCD 北大核心 2019年第6期925-932,共8页 Geomatics and Information Science of Wuhan University
基金 海洋卫星业务应用与无线电管理。
关键词 集成BM3D法 混合噪声 去噪 遥感影像 integrated BM3D method mixture noise denoising remote sensing image
作者简介 赵洪臣,硕士,主要从事海洋遥感与GIS研究。276905818@qq.com;通讯作者:周兴华,博士,研究员。xhzhou@fio.org.cn.
  • 相关文献

参考文献5

二级参考文献66

共引文献21

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏