期刊文献+

二阶线性微分方程解与不动点的关系 预览

The Relation Between Solutions of Second Order Linear Differential Equation with Fixed Points
在线阅读 下载PDF
收藏 分享 导出
摘要 使用Nevanlinna值分布的基本理论和方法,研究了几类二阶线性微分方程解及解的导数与其不动点之间的关系,得到了方程解及其导数的不动点的不同点收敛指数为无穷和二级收敛指数等于解的超级的精确结果. It was investigated that the relations between solutions of second order linear differential equations and their derivatives with fixed point by by using the theory and the method of Nevanlinna value distribution.The precision result was obtained that convergence exponents of various points of equation solutions and their derivatives fetch the fixed point is infinite and the second order convergence exponents with the hyper order of solution is equal.
作者 龚攀 石黄萍 程国飞 GONG Pan;SHI Huangping;CHENG Guofei(School of Mathematics and Computer Science, Shangrao Normal University, Shangrao 334001, China)
出处 《应用泛函分析学报》 2019年第2期162-170,共9页 Acta Analysis Functionalis Applicata
基金 江西省教育厅科技计划项目(151051) 上饶师范学院自然科学基金(201606).
关键词 微分方程 整函数 超级 二级收敛指数 不动点 differential equation entire function hyper-order 2th exponents of convergence fixed point
作者简介 龚攀(1989-),男,汉,江西南昌人助教,硕士研究生,研究方向:复分析,E-mail:654074653@qq.com.
  • 相关文献

参考文献6

二级参考文献10

共引文献43

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈