期刊文献+

Metformin improved oxidized low-density lipoprotein-impaired mitochondrial function and increased glucose uptake involving Akt-AS160 pathway in raw264.7 macrophages

收藏 分享 导出
摘要 Background:Macrophage accumulation in the vascular wall is a hallmark of atherosclerosis.Studies showed that shifting of oxidized lipids-induced inflammatory macrophages towards an anti-inflammatory phenotype by promoting oxidative metabolism attenuated atherosclerosis progression.Therefore,this study aimed to investigate whether metformin,which has ameliorated atherosclerosis in animal models and clinical trials,modulated oxidized low-density lipoprotein (Ox-LDL) induced inflammatory status in macrophages by regulating cellular oxidative metabolism.Methods:Murine raw264.7 macrophages were incubated with Ox-LDL (50 μg/mL) in the presence or absence of metformin (15 μmol/L) for 24 h.Real-time polymerase chain reaction was used to quantify the transcription of classically activated (M1) proinflammatory and alternatively activated (M2) anti-inflammatory markers and mitochondrial DNA copy numbers.Cellular reactive oxygen species (ROS) production and mitochondrial membrane potential were detected by immunofluorescence.Cellular adenosine triphosphate (ATP) synthesis,glucose uptake,and lactic acid production were measured by commercial kit and normalized to cellular lysates.Western blotting analysis was performed to detect the expression of mitochondrial fusion/fission related proteins,enzymes mediating lipid metabolism and signaling pathway of glucose transport.Differences between groups were analyzed using one-way analysis of variance.Results:Metformin improved Ox-LDL-impaired anti-inflammatory phenotype in raw264.7 macrophages as shown by up-regulated transcription of anti-inflammatory markers including interleukin 10 (0.76 ± 0.04 vs.0.94 ± 0.01,P =0.003) and Resistin-like molecule alpha (0.67 ± 0.08 vs.1.78 ± 0.34,P =0.030).Conversely,Ox-LDL-diminished phosphorylation of Akt was up regulated by metformin treatment (0.47 ± 0.05 vs.1.02 ± 0.08,P =0.040),associated with an improvement of mitochondrial function,characterized by decreased ROS generation (2.50 ± 0.07 vs.2.15 ± 0.04,P =0.040),increased lipid oxid
出处 《中华医学杂志:英文版》 SCIE CAS CSCD 2019年第14期1713-1722,共10页 Chinese Medical Journal
作者简介 Correspondence to: Prof.Qian Gao,Medical School of Nanjing University,No.22 Hankou Road,Science and Technology Bldg 217,Nanjing,Jiangsu 210093,China E-Mail: qian_gao@nju.edu.cn.
  • 相关文献
投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈