期刊文献+

基于最小外接矩形的遥感影像建筑物轮廓优化方法 认领

Remote Sensing Image Building Contour Optimization Method Based on Minimum External Rectangle
在线阅读 下载PDF
收藏 分享 导出
摘要 深度学习提取高分辨率遥感影像中的建筑物信息容易受到物体周围的阴影、植被等噪声干扰而使结果存在边界锯齿化、建筑物整体不规整等问题。本文提出了利用符合建筑物边界轮廓的最小外接矩形最大限度地拟合建筑物轮廓的思路。首先利用深度学习和建筑物验证处理得到的建筑物信息,对建筑物边界利用垂距法进行多边形的拟合;然后对多边形的最小外接矩形进行筛选,选取最合适的最小外接矩形边线段作为新的边界轮廓,以提高提取的精度。对多幅遥感影像进行了实验,结果表明,本文所提出的方法提高了深度学习提取的建筑物边界轮廓准确性,能更逼近真实建筑物的边界轮廓。 In deep learning,building information extracted from high-resolution remote sensing images is easily disturbed by shadows around objects,vegetation and other noises,resulting in jagged boundaries and irregular buildings.This paper puts forward the idea of fitting the building contour to the maximum extent by using the minimum external rectangle that conforms to the building boundary contour.First,deep learning and building verification applied to process the building information.The vertical distance method is explored to fit polygons of building boundaries.Then,the minimum peripheral rectangle of the polygon is screened,and the most appropriate edge line of the minimum peripheral rectangle is selected as the new boundary contour to improve the extraction accuracy.Experiments on remote sensing images show that the proposed method improved the accuracy and final accuracy of building boundary contour extracted by deep learning,and could more closely approximate the boundary contour of buildings in remote sensing images.
作者 周再文 王建 朱恰 刘星雨 马紫雯 高贤君 ZHOU Zaiwen;WANG Jian;ZHU Qia;LIU Xingyu;MA Ziwen;GAO Xianjun(School of Geoscience,Yangtze University,Wuhan Hubei,430100,China)
出处 《北京测绘》 2021年第1期1-6,共6页 Beijing Surveying and Mapping
基金 武汉大学测绘遥感信息工程国家重点实验室开放基金(18R04) 湖北省教育厅科学研究计划(Q20181317) 长江大学2019年大学生创新创业训练计划(2019042)。
关键词 深度学习 高分辨率遥感影像 最小外接矩形 垂距法 建筑物边界轮廓 deep learn high resolution remote sensing image minimum external rectangle the offset method building boundary contour
  • 相关文献

参考文献12

二级参考文献82

  • 1安如 ,赵萍 ,王慧麟 ,冯学智 ,何凯 .遥感影象中居民地信息的自动提取与制图[J].地理科学,2005,25(1):74-80. 被引量:19
  • 2宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-5. 被引量:122
  • 3刘正军,张继贤,孟亚宾,梁欣廉,孙晓霞.基于分类与形态综合的高分辨率影像建筑物提取方法研究[J].测绘科学,2007,32(3):38-39. 被引量:17
  • 4Song S Y,Shan X J.Preliminary Application of High-resolution Satellite Image in City Building Classification [J] Remote Sensing Information, 2002,1:26-30.[宋晓宇,单新建.高分辨率卫星影像在城市建筑物识别中的初步应用[J].遥 被引量:1
  • 5Faber A,F?RSTNER W.Scale Characteristics of Local Autocovariances for Texture Segmentation [J]. International Archives of Photogrammetrie and Remote Sensing,1999,32:(7-4-3). 被引量:1
  • 6Definients Image GmbH.eCognition User Guide[R].1999,Germany.11-17. 被引量:1
  • 7Xu Q S,Zhao F S,Wei H L,et al.Fuzzy Unsupervised Segmentation and Pixel Analysis of Remote Sensing Images[J] Photoelectron Technology and Information,1998,11(5):21-18.[徐青山,赵凤生,魏合理等.遥感模糊图像分割与像元分析[J] 被引量:1
  • 8Haralick R, Shapiro.Image Segmentation Techniques[J]. Computer Vision,Graphics and Image Processing.1985,12:100-132. 被引量:1
  • 9Gao F Q,Wu J P,Sun J Z.Greenlard Information Extraction and Mapping System Based on the Aerial Remote Sensing Data[J]. Remote Sensing for Land & Resources,2001,2:57-61.[高芳琴,吴健平,孙建中.基于航空遥感数据的绿地信息 被引量:1
  • 10Baltsavias E, Hahn M. Integrating spatial information and image analysis-one plus one makes ten[J].INTERNATIONAL AR- CHIVES OF PHOTOGRAMMETRY AND REMOTE SENSING,2000, 33(B2; PART 2):63-74. 被引量:1

共引文献208

202103读书月活动
维普数据出版直通车
今日学术
投稿分析
职称考试

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈