期刊文献+

基于变分模态分解的单通道信号盲源分离方法 预览

Blind Source Separation of Single-channel Signal Based on Variation Mode Decomposition
在线阅读 下载PDF
收藏 分享 导出
摘要 针对单通道情况下传统盲源分离方法难以恢复源信号的问题,提出一种基于变分模态分解(VMD)的单通道信号盲源分离方法。首先对单通道信号进行变分模态分解(VMD)获得一系列本征模态函数(IMF)分量,将单通道信号和其IMF分量构成多维信号,然后采用主成分分析法估计源数,依据估计的源信号数目重组多通道观测信号,最后利用改进的变步长等变自适应分离(VSEASI)算法实现信号的盲分离。将所提出方法应用于齿轮和轴承的单通道信号仿真研究,仿真结果表明,该方法能够有效地分离出齿轮和轴承信号,解决了单通道信号盲源分离问题。 Aiming at the difficulty of blind source separation(BSS) method cannot solve the problem of single channel blind source separation, a new algorithm based on variation mode decomposition(VMD) was proposed in this paper. First, the observed signal was decomposed into instrinsic mode function(IMF)components by variation mode decomposition(VMD),then the obstained IMFs and the original observed signal are combined to compose new multidimensional signals. Secondly, the application of principal component analysis could accurately estimate the number of source signals, multiple channel observation signals are reconstructed based on estimated source signals. Finally, the variable step equivariant adaptive separation via independence(VSEASI) algorithm is adopted to solve the BSS problem. This method is applied to the simulation research of bearing and gear in order to correctly separate their source signals. Simulation research indicates that it can well solve the difficult problem of single channel blind source separation.
作者 王康 程浩 张坤 Wang Kang;Cheng Hao;Zhang Kun(Institute of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,China)
出处 《科技通报》 2019年第2期138-143,149共7页 Bulletin of Science and Technology
基金 国家自然科学基金资助项目(项目编号:51604011) 安徽省自然科学基金资助项目(项目编号:1708085QF135) 安徽省高校优秀青年人才支持计划重点项目(项目编号:gxyqZD2016082) 安徽理工大学研究生创新基金项目(项目编号:2017CX2033).
关键词 盲源分离 单通道 变分模态分解 等变自适应分离 blind source separation single channel Variation mode decomposition equivariant adaptive separation via independence
作者简介 王康(1991-)男,硕士研究生,研究方向:信号处理、智能算法。E-mail:lampardwk8@163.com。
  • 相关文献

参考文献14

二级参考文献163

共引文献294

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈