We propose a fiber-solid hybrid system which consists of a semiconductor saturable absorber mirror(SESAM)modelocked fiber seed with a pulse width of 10.2 ps and a repetition rate of 18.9 MHz,a two-level fiber pre-ampl...We propose a fiber-solid hybrid system which consists of a semiconductor saturable absorber mirror(SESAM)modelocked fiber seed with a pulse width of 10.2 ps and a repetition rate of 18.9 MHz,a two-level fiber pre-amplifier and a double-passing end-pumped Nd:YVO4 amplifier.In the solid-state amplifier,to enhance the gain and the extraction efficiency,a specially designed structure in which the seed light passes through the gain medium four times and makes full use of population inversion is used as the double-passing amplifier.Besides,the beam filling factor(the ratio of the seed light diameter to the pump light diameter)and the thermal lens effect of the double-passing amplifier are considered and its optical-to-optical conversion efficiency is further improved.To preserve the beam quality of the double-passing amplifier,a new method of spherical-aberration self-compensation based on the principles of geometrical optics is used and discussed.Our system achieves a maximum average power of 9.5Wat the pump power of 28W,corresponding to an optical-to-optical efficiency of 27%.And the beam quality factor M^2 reaches 1.3 at the maximum output power.展开更多
We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the...We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the seed source,which is gain-switched to generate nanosecond pulses with tunable pulse widths of 1-200 ns and tunable repetition rates of10 Hz-100 kHz.By utilizing a very-large-mode-area Yb-doped fiber with a core diameter of 50 μm in the power amplifier,thresholds of the stimulated Brillouin scattering at different pulse widths and repetition rates are increased.The maximum average power reaches 30.8 W at the pulse width of 4 ns and a repetition rate of 100 kHz,corresponding to an optical-tooptical conversion efficiency of ~55.2%.Pulse energy and peak power are calculated to be 0.2 mJ and 50 kW,respectively,which are limited by stimulated Brillouin scattering.The 3-dB spectral linewidth remains around 0.05 nm during the power scaling process.The stimulated Brillouin scattering limited output powers at different pulse widths and repetition rates are investigated.Peak power of 47.5 kW(0.19 mJ) is obtained for the 4 ns pulses at a repetition rate of 50 kHz,which is nearly the same as that of 4 ns pulses at 100 kHz.When the pulse width of the seed source is increased to 8 ns,peak powers/pulse energies are decreased to 19.6 kW/0.11 mJ and 13.3 kW/0.08 mJ at repetition rates of 50 kHz and 100 kHz,respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675009 and 61325021)Key Program of Beijing Municipal Natural Science Foundation,China(Grant No.KZ201910005006).
文摘We propose a fiber-solid hybrid system which consists of a semiconductor saturable absorber mirror(SESAM)modelocked fiber seed with a pulse width of 10.2 ps and a repetition rate of 18.9 MHz,a two-level fiber pre-amplifier and a double-passing end-pumped Nd:YVO4 amplifier.In the solid-state amplifier,to enhance the gain and the extraction efficiency,a specially designed structure in which the seed light passes through the gain medium four times and makes full use of population inversion is used as the double-passing amplifier.Besides,the beam filling factor(the ratio of the seed light diameter to the pump light diameter)and the thermal lens effect of the double-passing amplifier are considered and its optical-to-optical conversion efficiency is further improved.To preserve the beam quality of the double-passing amplifier,a new method of spherical-aberration self-compensation based on the principles of geometrical optics is used and discussed.Our system achieves a maximum average power of 9.5Wat the pump power of 28W,corresponding to an optical-to-optical efficiency of 27%.And the beam quality factor M^2 reaches 1.3 at the maximum output power.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61675009)the Beijing Natural Science Foundation Program, China,Scientific Research Key Program of Beijing Municipal Education Commission, China (Grant No. KZ201910005006)
文摘We demonstrate an all-fiberized narrow-linewidth nanosecond amplifier with high peak power,tunable pulse width,and repetition rate.A fiber-coupled narrow-linewidth laser diode operating at 1064.1 nm is employed as the seed source,which is gain-switched to generate nanosecond pulses with tunable pulse widths of 1-200 ns and tunable repetition rates of10 Hz-100 kHz.By utilizing a very-large-mode-area Yb-doped fiber with a core diameter of 50 μm in the power amplifier,thresholds of the stimulated Brillouin scattering at different pulse widths and repetition rates are increased.The maximum average power reaches 30.8 W at the pulse width of 4 ns and a repetition rate of 100 kHz,corresponding to an optical-tooptical conversion efficiency of ~55.2%.Pulse energy and peak power are calculated to be 0.2 mJ and 50 kW,respectively,which are limited by stimulated Brillouin scattering.The 3-dB spectral linewidth remains around 0.05 nm during the power scaling process.The stimulated Brillouin scattering limited output powers at different pulse widths and repetition rates are investigated.Peak power of 47.5 kW(0.19 mJ) is obtained for the 4 ns pulses at a repetition rate of 50 kHz,which is nearly the same as that of 4 ns pulses at 100 kHz.When the pulse width of the seed source is increased to 8 ns,peak powers/pulse energies are decreased to 19.6 kW/0.11 mJ and 13.3 kW/0.08 mJ at repetition rates of 50 kHz and 100 kHz,respectively.