期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
NIR高光谱成像技术联用SPA算法快速检测五花肉的过氧化值 认领
1
作者 何鸿举 王洋洋 +6 位作者 王魏 朱亚东 马汉军 陈复生 朱明明 《食品工业科技》 CAS 北大核心 2020年第8期236-241,共6页
利用近红外(NIR)高光谱成像技术结合连续投影算法(SPA)快速、无损检测五花肉的过氧化值。通过高光谱成像系统采集样品的光谱图像,提取其反射光谱信息,经过基线校正(BC)、高斯滤波平滑(GFS)、中值滤波平滑(MFS)、卷积平滑(SGS)、移动平... 利用近红外(NIR)高光谱成像技术结合连续投影算法(SPA)快速、无损检测五花肉的过氧化值。通过高光谱成像系统采集样品的光谱图像,提取其反射光谱信息,经过基线校正(BC)、高斯滤波平滑(GFS)、中值滤波平滑(MFS)、卷积平滑(SGS)、移动平均值平滑(MAS)、标准正态变量变换(SNV)、多元散射校正(MSC)七种预处理后,利用偏最小二乘(PLS)建立预测模型。使用SPA筛选最优波长,重新预算,构建优化的PLS模型和多元线性回归(MLR)模型。结果显示,经过BC预处理(RP=0.960,RMSEP=5.15×10-4 g/100 g)和原始数据RAW(RP=0.960,RMSEP=4.89×10-4 g/100 g)的全波段PLS模型(F-PLS)预测过氧化值效果较好。优化结果显示,RAW的MLR模型(RP=0.968,RMSEP=4.12×10-4 g/100 g)预测效果更好。研究表明,NIR高光谱成像技术联用SPA算法可潜在实现对五花肉过氧化值的快速无损检测。 展开更多
关键词 高光谱成像技术 过氧化值 偏最小二乘 连续投影算法 多元线性回归
在线阅读 免费下载
高光谱成像技术结合线性回归算法快速预测鸡肉掺假牛肉 认领 被引量:3
2
作者 朱亚东 何鸿举 +7 位作者 王魏 马汉军 刘玺 刘苏汉 朱明明 王正荣 《食品工业科技》 CAS 北大核心 2020年第4期184-189,共6页
采用近红外高光谱成像技术(900~1700 nm)结合线性回归算法对牛肉掺假快速无损检测。将鸡肉糜掺入牛肉糜中制备牛肉掺假样品,掺假比例为2%~98%(w/w),掺假间隔为2%。采集掺假样品的光谱图像,提取光谱数据,并利用偏最小二乘回归(Partial le... 采用近红外高光谱成像技术(900~1700 nm)结合线性回归算法对牛肉掺假快速无损检测。将鸡肉糜掺入牛肉糜中制备牛肉掺假样品,掺假比例为2%~98%(w/w),掺假间隔为2%。采集掺假样品的光谱图像,提取光谱数据,并利用偏最小二乘回归(Partial least squares regression,PLSR)和多元线性回归(Multiple linear regression,MLR)算法建立掺假样品的定量预测模型。为了减少高维共线性问题,提高模型运算效率,分别采用PLS-β系数法、逐步回归法(Stepwise)和连续投影算法(Successive projection algorithm,SPA)筛选最优波长建立优化预测模型。结果表明,基于SPA算法结合MLR建模方法得到的掺假牛肉预测模型,其预测效果最优,校正集决定系数(R2C)和均方根误差(Root mean square error of calibration,RMSEC)分别为0.99和3.23%,验证集的决定系数(R2P)和均方根误差(Root mean square error of prediction)RMSEP分别为0.97和5.31%,预测偏差(Residual predictive deviation,RPD)为6.82。综上,近红外高光谱成像技术结合线性回归算法可以实现对掺假牛肉的快速无损定量检测。 展开更多
关键词 高光谱成像技术 化学计量学分析 线性回归算法 掺假 定量检测 牛肉 鸡肉
在线阅读 免费下载
基于高光谱信息的生鲜鸡肉离心损失率快速预测模型构建 认领 被引量:1
3
作者 何鸿举 王洋洋 +8 位作者 王魏 朱亚东 马汉军 陈复生 王玉玲 朱明明 潘润淑 《食品工业科技》 CAS 北大核心 2020年第9期238-243,共6页
本文旨在挖掘900~1700 nm波长范围内的高光谱信息构建生鲜鸡肉离心损失率的快速预测模型。通过采集生鲜鸡肉样品的高光谱图像,并提取图像感兴趣区域的光谱信息,经基线校正(Baseline Correction,BC)、高斯滤波平滑(Gaussian Filter Smoot... 本文旨在挖掘900~1700 nm波长范围内的高光谱信息构建生鲜鸡肉离心损失率的快速预测模型。通过采集生鲜鸡肉样品的高光谱图像,并提取图像感兴趣区域的光谱信息,经基线校正(Baseline Correction,BC)、高斯滤波平滑(Gaussian Filter Smoothing,GFS)、多元散射校正(Multiplicative Scatter Correction,MSC)、移动平均值平滑(Moving Average Smoothing,MAS)、中值滤波平滑(Median Filtering Smoothing,MFS)5种光谱预处理后,建立全波段偏最小二乘(Partial Least Squares,PLS)回归模型,并利用回归系数法(Regression Coefficient,RC)、连续投影算法(Successive Projections Algorithm,SPA)和逐步回归法(Stepwise)筛选特征波长,优化全波段模型。结果显示,基于Stepwise法从原始光谱中筛选的16个最优波长(900.6、915.4、1024.0、1089.8、1111.2、1155.6、1165.5、1288.9、1305.4、1433.9、1442.1、1486.7、1493.3、1541.1、1690.1和1693.4 nm)构建的PLS模型预测效果较好,其中,rC为0.94,RMSEC(Root Mean Square Error of Calibration)为1.43%,rP为0.94,RMSEP(Root Mean Square Error of Prediction)为1.60%。本文表明,基于高光谱信息构建的PLS模型可快速预测生鲜鸡肉离心损失率。 展开更多
关键词 高光谱 生鲜鸡肉 逐步回归法 偏最小二乘 离心损失率
在线阅读 免费下载
基于NIR高光谱技术快速预测冷鲜鸡肉热杀索丝菌含量 认领
4
作者 何鸿举 +7 位作者 马汉军 王慧 陈复生 康壮丽 潘润淑 朱明明 王正荣 《食品工业科技》 CAS 北大核心 2020年第13期241-246,252,共7页
基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量... 基于NIR高光谱成像技术快速评估鸡肉热杀索丝菌含量。通过采集新鲜鸡肉高光谱图像并提取样本反射光谱信息(900~1699 nm),再采用多元散射校正(Multiplicative Scatter Correction,MSC)、基线校正(Baseline Correction,BC)和标准正态变量校正(Standard Normal Variable Correction,SNV)三种方法预处理原始光谱,分别利用偏最小二乘(Partial Least Squares,PLS)、多元线性回归(Multiple Linear Regression,MLR)挖掘光谱信息与鸡肉热杀索丝菌参考值之间的定量关系。同时采用PLS-β系数法、Stepwise算法和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长简化全波段模型(F-PLS)提高预测效率。结果显示,经BC预处理的全波段光谱(485个波长)构建的F-PLS模型预测热杀索丝菌效果较好,相关系数RP为0.973,误差RMSEP为0.295 lg CFU/g。基于PLS-β法从BC预处理光谱中筛选出25个最优波长构建的PLS-β-PLS(RP=0.931,RMSEP=0.434 lg CFU/g)模型预测较好。本试验表明,利用近红外高光谱成像技术可潜在实现鸡肉热杀索丝菌含量的快速评估。 展开更多
关键词 高光谱成像 快速检测 鸡胸肉 热杀索丝菌
在线阅读 免费下载
在线近红外光谱系统快速检测整块鸡胸肉菌落总数含量 认领
5
作者 何鸿举 +5 位作者 王洋洋 王玉玲 马汉军 陈复生 朱明明 《食品工业科技》 CAS 北大核心 2020年第16期232-237,共6页
以整块鸡胸肉为研究对象,利用在线近红外光谱系统采集其900~1650 nm波长范围内的光谱信息,探究光谱信息与细菌菌落总数(Total Viable Count,TVC)之间的定量关系。对采集的原始光谱信息进行高斯滤波平滑(Gaussian Filter Smoothing,GFS)... 以整块鸡胸肉为研究对象,利用在线近红外光谱系统采集其900~1650 nm波长范围内的光谱信息,探究光谱信息与细菌菌落总数(Total Viable Count,TVC)之间的定量关系。对采集的原始光谱信息进行高斯滤波平滑(Gaussian Filter Smoothing,GFS)等五种预处理后,建立全波段偏最小二乘(Partial Least Squares,PLS)回归模型。采用回归系数法(Regression Coefficient,RC)和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长,构建优化的PLS模型和多元线性回归(Multiple Linear Regression,MLR)模型。结果表明,基于全波段GFS光谱构建的GFS-PLS模型预测鸡胸肉TVC效果最佳(rP=0.964,RMSEP=0.806 lg CFU/g)。基于SPA法从GFS光谱中筛选出的25个最优波长(907.0、913.7、923.8、927.2、937.2、947.3、974.0、987.3、997.3、1007.3、1040.4、1080.1、1099.9、1132.9、1155.9、1185.5、1215.0、1241.2、1270.6、1358.2、1380.8、1403.3、1419.3、1578.9和1615.2 nm),建立的SPA-GFS-MLR模型预测性能(rP=0.944,RMSEP=1.022 lg CFU/g)最接近GFS-PLS模型。基于在线近红外光谱系统可实现对大批量整块鸡胸肉细菌总数含量的快速无接触检测。 展开更多
关键词 在线近红外 快速检测 光谱信息 细菌总数 鸡胸肉 偏最小二乘
在线阅读 免费下载
基于近红外高光谱成像快速无损检测注胶肉研究 认领 被引量:1
6
作者 何鸿举 朱亚东 +7 位作者 王魏 马汉军 陈复生 刘玺 朱明明 王正荣 《食品工业科技》 CAS 北大核心 2020年第10期219-223,共5页
采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探... 采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探究光谱信息与不同掺假比例卡拉胶之间的定量关系。结果表明全波段光谱(900~1700 nm)所构建的PLS校正集模型均方根误差(Root mean square error,RMSE)为1.74%,预测模型RMSE为3.16%。表明基于全波段所建立的PLS模型具有较优的预测性能。利用连续投影算法(Successive projection algorithm,SPA)筛选获得11个特征波长,并优化全波长PLS模型,将预测集样品带入,以验证模型的预测效果,结果表明SPA算法结合PLS建模方法所建立的模型预测效果更优,预测集相关系数(RP)为0.93,均方根误差(Root mean square error of prediction,RMSEP)为3.51%,预测偏差(Residual predictive deviation,RPD)为2.66。试验表明利用高光谱成像技术可实现对注胶猪肉的快速无损检测。 展开更多
关键词 高光谱成像技术 注胶肉 偏最小二乘法 连续投影算法 无损检测
在线阅读 免费下载
高光谱快速预测冷鲜鸡胸肉中乳酸菌 认领
7
作者 何鸿举 +6 位作者 王魏 王玉玲 马汉军 陈复生 朱明明 周浩宇 《食品工业科技》 CAS 北大核心 2020年第12期227-233,共7页
乳酸菌含量是评价冷鲜鸡胸肉品质的重要指标。随着储藏天数的增加,当乳酸菌含量超过10~6 CFU/g,冷鲜鸡胸肉黏度增加,开始腐败变味。本研究通过化学计量学算法挖掘高光谱数据快速预测鸡胸肉中乳酸菌含量。首先,采集119个冷鲜鸡胸肉样品90... 乳酸菌含量是评价冷鲜鸡胸肉品质的重要指标。随着储藏天数的增加,当乳酸菌含量超过10~6 CFU/g,冷鲜鸡胸肉黏度增加,开始腐败变味。本研究通过化学计量学算法挖掘高光谱数据快速预测鸡胸肉中乳酸菌含量。首先,采集119个冷鲜鸡胸肉样品900~1700 nm的高光谱图像,提取肉样图像感兴趣区域(Region of interest,ROI)内的光谱信息,经多元散射校正(Multiplicative Scatter Correction,MSC)等8种方法预处理原始光谱,采用偏最小二乘(Partial Least Squares,PLS)算法挖掘光谱信息,构建全波段PLS预测模型(F-PLS)。然后,选用回归系数法(Regression Coefficient,RC)、逐步回归法(Stepwise)和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长优化F-PLS模型。结果显示,基于SPA法从基线校正(Baseline Correction,BC)预处理光谱中筛选出21个最优波长(903.8、905.5、912.1、915.4、917.0、920.3、923.6、931.8、941.7、1107.0、1135.9、1157.3、1269.2、1303.7、1320.2、1348.2、1551.1、1676.9、1686.9、1695.1和1698.4 nm)构建的SPA-PLS模型预测最好(r_P=0.949,RMSEP=0.439lg CFU/g,RPD=2.787)。本试验表明,采用近红外高光谱技术快速预测冷鲜鸡胸肉中乳酸菌含量是可行的。 展开更多
关键词 高光谱 化学计量学算法 快速预测 冷鲜鸡胸肉 乳酸菌
在线阅读 免费下载
近红外高光谱快速无接触评估冷鲜猪肉脂质氧化 认领 被引量:1
8
作者 何鸿举 王魏 +5 位作者 李波 王玉玲 朱亚东 马汉军 陈复生 《食品与机械》 北大核心 2020年第8期117-122,共6页
基于近红外高光谱成像技术对不同贮藏期的猪肉脂肪氧化程度进行快速无接触评估研究。采集冷鲜猪肉样品的900~1700 nm反射光谱信息,经高斯滤波平滑(GFS)、移动平均值平滑(MAS)、卷积平滑(SGCS)、中值滤波平滑(MFS)、多元散射校正(MSC)、... 基于近红外高光谱成像技术对不同贮藏期的猪肉脂肪氧化程度进行快速无接触评估研究。采集冷鲜猪肉样品的900~1700 nm反射光谱信息,经高斯滤波平滑(GFS)、移动平均值平滑(MAS)、卷积平滑(SGCS)、中值滤波平滑(MFS)、多元散射校正(MSC)、标准正态变量变换(SNV)和基线校正(BC)7种预处理后,利用偏最小二乘回归(PLSR)算法挖掘光谱信息与2-硫代巴比妥酸(TBA)参考值之间的定量关系。结果显示,经GFS预处理的全波段光谱(486个波长)构建的GFS-PLSR模型预测TBA效果较好(R P=0.919,RMSEP=0.036 mg/100 g)。采用回归系数法(RC),逐步回归法(Stepwise)和连续投影算法(SPA)筛选最优波长优化GFS-PLSR模型。结果显示,使用RC法从GFS光谱中筛选的29个最优波长构建的RC-GFS-PLSR模型预测TBA效果较好(R P=0.924,RMSEP=0.034 mg/100 g),且和GFS-PLSR模型预测精度相近。试验表明,利用近红外高光谱成像技术结合RC法预测猪肉中TBA值可实现猪肉脂肪氧化程度的间接快速评估。 展开更多
关键词 近红外 高光谱 检测 猪肉 2-硫代巴比妥酸 脂质氧化
在线阅读 免费下载
近红外高光谱联用Stepwise算法快速无接触评估冷鲜鸡肉色泽及嫩度 认领 被引量:5
9
作者 何鸿举 +9 位作者 王慧 马汉军 陈复生 刘玺 贾方方 康壮丽 潘润淑 朱明明 王正荣 《食品工业科技》 CAS 北大核心 2019年第13期125-133,共9页
利用900~1700nm近红外高光谱成像系统联用Stepwise算法快速评估鸡肉色泽和嫩度。通过采集新鲜屠宰鸡肉高光谱图像,提取试验样本感兴趣区域(Region of interests,ROI)反射光谱信息,经中值滤波平滑(Median filtering smoothing,MFS)、多... 利用900~1700nm近红外高光谱成像系统联用Stepwise算法快速评估鸡肉色泽和嫩度。通过采集新鲜屠宰鸡肉高光谱图像,提取试验样本感兴趣区域(Region of interests,ROI)反射光谱信息,经中值滤波平滑(Median filtering smoothing,MFS)、多元散射校正(Multiplicative scatter correction,MSC)和标准正态变量变换( Standard normal variable correction,SNV)三种预处理后,分别利用偏最小二乘(Partial Least Squares,PLS)和多元线性回归(Multiple linear regression,MLR)挖掘光谱信息与鸡肉色泽参数(L^*、a^*、b^*)及嫩度参考值之间的定量关系。结果显示,经MFS预处理的近红外光谱(486个波长)构建的全波段PLS回归模型(F-PLS)预测L^*(RP=0.904,RMSEP=2.036)、b^*(RP=0.908,RMSEP=1.577)和嫩度(RP=0.948,RMSEP=1.596)效果更好。为提高预测效率,采用Stepwise算法筛选最优波长优化F-PLS模型,结果显示,从SNV预处理光谱筛选的14个最优波长构建MLR回归模型预测L^*值(RP=0.894,RMSEP=2.160)效果较优,从SNV预处理光谱筛选的13最优波长构建的O-PLS回归模型预测b^*值(RP=0.877,RMSEP=1.811)效果较优,从MFS预处理光谱筛选的20个最优波长构建O-PLS回归模型预测嫩度值(RP=0.888,RMSEP=2.408N)效果较优。本试验表明,利用近红外高光谱成像技术结合Stepwise算法可实现鸡肉色泽参数L^*、b^*值以及嫩度的快速评估。 展开更多
关键词 高光谱 检测 鸡肉 色泽 嫩度
在线阅读 免费下载
NIR光谱法快速预测小麦籽粒干物质含量 认领 被引量:10
10
作者 何鸿举 王玉玲 +5 位作者 乔红 欧行奇 刘红 王慧 王魏 《海南师范大学学报:自然科学版》 CAS 2019年第1期33-38,共6页
通过采集百农201、百农207、百农307、百旱207、AK-58、冠麦1号、周麦18等7个不同品种完整小麦籽粒的近红外光谱(900~1700 nm)信息,经高斯滤波平滑(Gaussian Filtering Smoothing,GFS)、标准化校正(Normalization Correction)和卷积平滑... 通过采集百农201、百农207、百农307、百旱207、AK-58、冠麦1号、周麦18等7个不同品种完整小麦籽粒的近红外光谱(900~1700 nm)信息,经高斯滤波平滑(Gaussian Filtering Smoothing,GFS)、标准化校正(Normalization Correction)和卷积平滑(Savitzky-Golay Convolution Smoothing,SGCS)三种预处理后,利用偏最小二乘回归(Partial Least Squares Regression,PLSR)算法寻找光谱信息与小麦籽粒干物质含量之间的定量关系。结果显示,经GFS预处理的近红外光谱(100个波长)构建的全波段PLSR模型(PLSR)预测相关系数(RP)为0.952,预测误差(RMSEP)为0.158%,RMSEC与RMSEP绝对值差(ΔE)为0.082,预测效果优于其他两种预处理光谱。从GFS光谱中经PLSR-β法筛选获得17个最优波长,构建的优化模型(O-PLSR)RP为0.928,RMSEP为0.191%,ΔE为0.049,其预测效果接近于PLSR模型。试验表明,利用900~1700 nm光谱可被潜在用于快速无损预测小麦籽粒干物质含量。 展开更多
关键词 光谱 检测 小麦 干物质
在线阅读 下载PDF
基于长波近红外光谱快速无接触评估小麦籽粒含水率 认领 被引量:11
11
作者 何鸿举 王玉玲 +5 位作者 乔红 欧行奇 刘红 王慧 朱亚东 《海南师范大学学报:自然科学版》 CAS 2019年第1期26-32,共7页
利用长波近红外光谱(900~1700 nm)联用偏最小二乘(Partial Least Squares,PLS)算法快速评估小麦水分含量。通过采集7个不同品种小麦籽粒(百农201、百农207、百农307、百旱207、AK-58、冠麦1号、周麦18)的近红外反射光谱信息,经高斯滤波... 利用长波近红外光谱(900~1700 nm)联用偏最小二乘(Partial Least Squares,PLS)算法快速评估小麦水分含量。通过采集7个不同品种小麦籽粒(百农201、百农207、百农307、百旱207、AK-58、冠麦1号、周麦18)的近红外反射光谱信息,经高斯滤波平滑(Gaussian Filtering Smoothing,GFS)、多元散射校正(Multiplicative Scatter Correction,MSC)和标准正态变量变换(Standard Normal Variable Correction,SNV)三种预处理后,分别利用偏最小二乘法(Partial Least Squares,PLS)挖掘光谱信息与小麦水分之间的定量关系。结果显示,经GFS预处理的近红外光谱(100个波长)构建的全波段PLS回归模型(F-PLS)的预测相关系数(RP=0.927)、预测误差(RMSEP=1.596%)和鲁棒性(ΔE=0.064)均优于另外两种光谱。采用Regression coefficient算法筛选最优波长优化F-PLS模型,以提高预测效率。结果显示,从GFS预处理光谱筛选的29个最优波长构建的O-PLS回归模型预测精度及鲁棒性均较好(R_P=0.909,RMSEP=0.229%,ΔE=0.078)。本试验表明,利用长波近红外光谱技术来快速无接触评估小麦籽粒含水率的潜力巨大。 展开更多
关键词 光谱 检测 小麦 水分
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈