Thermochemical heat storage(THS)systems have recently attracted a lot of attention in research and development.In this study,an anodic aluminum oxide(AAO)template,fabricated by a two-step anodization method,was used f...Thermochemical heat storage(THS)systems have recently attracted a lot of attention in research and development.In this study,an anodic aluminum oxide(AAO)template,fabricated by a two-step anodization method,was used for the first time as the matrix material for a THS system.Different salts were studied as thermochemical materials for their suitability in low-grade heat storage application driven by solar energy for an open system.Compositions were prepared by absorbing CaCl2,MgCl2,LiCl,LiNO3 and mixtures of these salts under a vacuum in an AAO matrix.Field Emission Scanning Electron Microscopy was used to examine the morphology of the produced AAO composites.Thermal energy storage capacities of the composites were characterized using a differential scanning calorimeter.Characterization analysis showed that anodized Al plates were suitable matrix materials for THS systems,and composite sorbent prepared with a 1:1 ratio LiCl/LiNO3 salt mixture had the highest energy value among all composites,with an energy density of 468.1 k J·kg-1.展开更多
基金This study was supported by the Scientific and Technological Research Council of Turkey(TUBITAK)(Project No.315M524)the Scientific Research Projects Coordin-ation Unit of Istanbul University(Project No.25427).
文摘Thermochemical heat storage(THS)systems have recently attracted a lot of attention in research and development.In this study,an anodic aluminum oxide(AAO)template,fabricated by a two-step anodization method,was used for the first time as the matrix material for a THS system.Different salts were studied as thermochemical materials for their suitability in low-grade heat storage application driven by solar energy for an open system.Compositions were prepared by absorbing CaCl2,MgCl2,LiCl,LiNO3 and mixtures of these salts under a vacuum in an AAO matrix.Field Emission Scanning Electron Microscopy was used to examine the morphology of the produced AAO composites.Thermal energy storage capacities of the composites were characterized using a differential scanning calorimeter.Characterization analysis showed that anodized Al plates were suitable matrix materials for THS systems,and composite sorbent prepared with a 1:1 ratio LiCl/LiNO3 salt mixture had the highest energy value among all composites,with an energy density of 468.1 k J·kg-1.