The structure of neutron-rich Ca isotopes is studied in the spherical Skyrme-Hartree-Fock-Bogoliubov(SHFB)approach with SLy5,SLy5+T,and 36 sets of TIJ parametrizations.The calculated results are compared with the avai...The structure of neutron-rich Ca isotopes is studied in the spherical Skyrme-Hartree-Fock-Bogoliubov(SHFB)approach with SLy5,SLy5+T,and 36 sets of TIJ parametrizations.The calculated results are compared with the available experimental data for the average binding energies,two-neutron separation energies and charge radii.It is found that the SLy5+T,T31,and T32 parametrizations reproduce best the experimental properties,especially the neutron shell effects at N=20,28 and 32,and the recently measured two-neutron separation energy of 56Ca.The calculations with the SLy5+T and T31 parametrizations are extended to isotopes near the neutron drip line.The neutron giant halo structure in the very neutron-rich Ca isotopes is not seen with these two interactions.However,depleted neutron central densities are found in these nuclei.By analyzing the neutron mean-potential,the reason for the bubble-like structure formation is given.展开更多
The low frequency load of an underwater explosion bubble and the generated waves can cause significant rigid motion of a ship that threaten its stability.In order to study the fluid-structure interaction qualitatively...The low frequency load of an underwater explosion bubble and the generated waves can cause significant rigid motion of a ship that threaten its stability.In order to study the fluid-structure interaction qualitatively,a two-dimensional underwater explosion bubble dynamics model,based on the potential flow theory,is established with a double-vortex model for the doubly connected bubble dynamics simulation,and the bubble shows similar dynamics to that in 3-dimensional domain.A fully nonlinear fluid-structure interaction model is established considering the rigid motion of the floating body using the mode-decomposition method.Convergence test of the model is implemented by simulating the free rolling motion of a floating body in still water.Through the simulation of the interaction of the underwater explosion bubble,the generated waves and the floating body based on the presented model,the influences of the buoyancy parameter and the distance parameter are discussed.It is found that the impact loads on floating body caused by underwater explosion bubble near the free surface can be divided into 3 components:bubble pulsation,jet impact,and slamming load of the generated waves,and the intensity of each component changes nonlinearly with the buoyance parameter.The bubble pulsation load decays with the increase in the horizontal distance.However,the impact load from the generated waves is not monotonous to distance.It increases with the distance within a particular distance threshold,but decays thereafter.展开更多
The restoration of pseudo-spin symmetry(PSS) along the N = 32 and N = 34 isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking t...The restoration of pseudo-spin symmetry(PSS) along the N = 32 and N = 34 isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking the proton pseudo-spin partners(π2s1/2,π1d3/2) as candidates, the systematic restoration of PSS along both isotonic chains is found from sulphur(S) to nickel(Ni), while an obvious PSS violation from silicon(Si) to sulphur is discovered near the drip lines. The effects of the tensor force components are investigated, introduced naturally by the Fock terms, which can only partially interpret the systematics from calcium to nickel, whereas they fail for the overall trends. Further analysis following the Schrodinger-like equation of the lower component of Dirac spinor shows that contributions from the Hartree terms dominate the overall systematics of the PSS restoration. Such effects can be self-consistently interpreted by the evolution of the proton central density profiles along both isotonic chains. In particular, the PSS violation is found to tightly relate to the dramatic changes from the bubble-like density profiles in silicon to the central-bumped ones in sulphur.展开更多
基金Supported by the National Natural Science Foundation of China(U1832120,11675265)the State Scholarship Fund of China Scholarship Council(201708130035)the Natural Science Foundation for Outstanding Young Scholars of Hebei Province of China(A2018210146)。
文摘The structure of neutron-rich Ca isotopes is studied in the spherical Skyrme-Hartree-Fock-Bogoliubov(SHFB)approach with SLy5,SLy5+T,and 36 sets of TIJ parametrizations.The calculated results are compared with the available experimental data for the average binding energies,two-neutron separation energies and charge radii.It is found that the SLy5+T,T31,and T32 parametrizations reproduce best the experimental properties,especially the neutron shell effects at N=20,28 and 32,and the recently measured two-neutron separation energy of 56Ca.The calculations with the SLy5+T and T31 parametrizations are extended to isotopes near the neutron drip line.The neutron giant halo structure in the very neutron-rich Ca isotopes is not seen with these two interactions.However,depleted neutron central densities are found in these nuclei.By analyzing the neutron mean-potential,the reason for the bubble-like structure formation is given.
基金This work was supported by the National Natural ScienceFoundation of China (Grant No. 51879050, 51609044), the Defense IndustrialTechnology Development Program of China (Grant No. JCKY2017604C002), NaturalScience Foundation of Heilongjiang Province of China (No. E2017021) and ShenzhenSpecial Fund for Future Industries (Grant No. JCYJ20160331163751413).
文摘The low frequency load of an underwater explosion bubble and the generated waves can cause significant rigid motion of a ship that threaten its stability.In order to study the fluid-structure interaction qualitatively,a two-dimensional underwater explosion bubble dynamics model,based on the potential flow theory,is established with a double-vortex model for the doubly connected bubble dynamics simulation,and the bubble shows similar dynamics to that in 3-dimensional domain.A fully nonlinear fluid-structure interaction model is established considering the rigid motion of the floating body using the mode-decomposition method.Convergence test of the model is implemented by simulating the free rolling motion of a floating body in still water.Through the simulation of the interaction of the underwater explosion bubble,the generated waves and the floating body based on the presented model,the influences of the buoyancy parameter and the distance parameter are discussed.It is found that the impact loads on floating body caused by underwater explosion bubble near the free surface can be divided into 3 components:bubble pulsation,jet impact,and slamming load of the generated waves,and the intensity of each component changes nonlinearly with the buoyance parameter.The bubble pulsation load decays with the increase in the horizontal distance.However,the impact load from the generated waves is not monotonous to distance.It increases with the distance within a particular distance threshold,but decays thereafter.
基金National Natural Science Foundation of China(11675065,11711540016).
文摘The restoration of pseudo-spin symmetry(PSS) along the N = 32 and N = 34 isotonic chains and the physics behind are studied by applying the relativistic Hartree-Fock theory with the effective Lagrangian PKA1. Taking the proton pseudo-spin partners(π2s1/2,π1d3/2) as candidates, the systematic restoration of PSS along both isotonic chains is found from sulphur(S) to nickel(Ni), while an obvious PSS violation from silicon(Si) to sulphur is discovered near the drip lines. The effects of the tensor force components are investigated, introduced naturally by the Fock terms, which can only partially interpret the systematics from calcium to nickel, whereas they fail for the overall trends. Further analysis following the Schrodinger-like equation of the lower component of Dirac spinor shows that contributions from the Hartree terms dominate the overall systematics of the PSS restoration. Such effects can be self-consistently interpreted by the evolution of the proton central density profiles along both isotonic chains. In particular, the PSS violation is found to tightly relate to the dramatic changes from the bubble-like density profiles in silicon to the central-bumped ones in sulphur.