期刊文献+
共找到3,031篇文章
< 1 2 152 >
每页显示 20 50 100
图像超分辨率卷积神经网络加速算法 预览
1
作者 刘超 张晓晖 胡清平 《国防科技大学学报》 EI CAS CSCD 北大核心 2019年第2期91-97,共7页
为了实现模型的实时和嵌入式运行,提出了一种轻量级的卷积神经网络结构。通过采用较小的滤波器尺寸和引入深度可分离卷积,可大量减少模型参数,提高模型非线性表达能力;在网络末端引入子像素卷积层,直接从原始低分辨率图像学习到高分辨... 为了实现模型的实时和嵌入式运行,提出了一种轻量级的卷积神经网络结构。通过采用较小的滤波器尺寸和引入深度可分离卷积,可大量减少模型参数,提高模型非线性表达能力;在网络末端引入子像素卷积层,直接从原始低分辨率图像学习到高分辨率图像的映射,计算成本为原来的1/k2(k为放大因子)。在Set5数据集上的实验表明,所提模型的速度较经典的图像超分辨率重建算法速度提高了25.8倍,能够在通用GPU上实时运行,峰值信噪比平均提高了0.17dB,并且参数只有它的35%。 展开更多
关键词 卷积神经网络 超分辨率重建 深度可分离卷积 子像素卷积
在线阅读 下载PDF
基于改进卷积神经网络的人脸识别研究 预览
2
作者 薛艳杰 邓燕妮 《科技风》 2019年第11期106-106,131共2页
由于传统的深度卷积神经网络用于人脸识别时,往往结构层数多,参数量大,训练难度高。本文在经典网络Le Net-5的基础上提出一种新的卷积神经网络模型来进行人脸识别。首先,结构上包含两个子卷积网络,实现多卷积的功效;然后,对于提取人脸... 由于传统的深度卷积神经网络用于人脸识别时,往往结构层数多,参数量大,训练难度高。本文在经典网络Le Net-5的基础上提出一种新的卷积神经网络模型来进行人脸识别。首先,结构上包含两个子卷积网络,实现多卷积的功效;然后,对于提取人脸特征的卷积层和池化层采取融合,以减少网络参数及训练时间;采用两个全连接层,第一个全连接层与前面完成特征提取的每个单层连接来实现对多尺度特征的采集;最后的分类层采用Softmax分类器。实验结果表明,与传统结构模型相比,识别率有所提高,其训练速度提升了,验证了新网络模型人脸识别方法的有效性。 展开更多
关键词 人脸识别 卷积神经网络 多子卷积网络 卷积池化层融合 多尺度特征采集
在线阅读 下载PDF
基于光流场的时间分段网络行为识别
3
作者 焦红虹 周浩 方淇 《云南大学学报:自然科学版》 CAS CSCD 北大核心 2019年第1期36-45,共10页
针对在双流时间分段网络上进行行为识别在预处理阶段耗时长、精细度有待提高这一问题,在现有的时间分段网络的基础上,将深度学习求解光流场的算法引入到行为识别这一应用中.用原始RGB帧图像作为空间卷积网络的输入提取外观信息,深度学... 针对在双流时间分段网络上进行行为识别在预处理阶段耗时长、精细度有待提高这一问题,在现有的时间分段网络的基础上,将深度学习求解光流场的算法引入到行为识别这一应用中.用原始RGB帧图像作为空间卷积网络的输入提取外观信息,深度学习算法从相邻帧提取的光流场特征图像作为时间卷积网络的输入提取运动信息,两者互为补充,最后将空间卷积网络和时间卷积网络的输出加权融合得到最终识别结果.实验结果表明:用深度学习求解光流场的算法可有效提高识别算法的运算速度,同时也取得了较好的识别效果. 展开更多
关键词 行为识别 卷积神经网络 空间卷积网络 时间卷积网络 光流场 时间分段网络
深度非对称跳跃连接的图像降噪方法 预览
4
作者 公绪超 李宗民 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第2期295-302,共8页
图像降噪可有效地改善图像质量,提升感官效果,也是图像特征提取与理解的前提.针对目前比较流行的卷积神经网络降噪方法中顺序连接的卷积层-反卷积层会使图像在梯度反传过程中逐渐弱化图像噪声的学习问题,提出一种深度非对称跳跃连接的... 图像降噪可有效地改善图像质量,提升感官效果,也是图像特征提取与理解的前提.针对目前比较流行的卷积神经网络降噪方法中顺序连接的卷积层-反卷积层会使图像在梯度反传过程中逐渐弱化图像噪声的学习问题,提出一种深度非对称跳跃连接的方法用于图像降噪.该方法设计多组非对称跳跃连接卷积-反卷积算子,以有效学习图像细节及噪声信息,并对不同深度的卷积操作进行权重量化,以加强图像降噪及恢复;通过非对称跳跃连接可使图像噪声信息能够直接反传到对应的多个卷积层中,对梯度扩散有良好的抑制作用.采用伯克利分割数据集BSD300进行实验的结果表明,文中算法比基准方法在结构相似性(SSIM)和峰值信噪比(PSNR)2种指标上都有提升. 展开更多
关键词 卷积算子 卷积算子 卷积神经网络 高斯分布 图像降噪
在线阅读 下载PDF
基于卷积神经网络的纺织面料主成分分类
5
作者 张玮 张华熊 《浙江理工大学学报》 2019年第1期1-8,共8页
为自动检测纺织面料的主成分,以100~200倍放大后拍摄的纯纺面料或主成分含量在50%以上的混纺面料图像为研究对象,提出了一种基于深度卷积神经网络的纺织面料主成分分类方法。首先对纺织图像进行裁剪及颜色空间转换;然后将图像输入卷积... 为自动检测纺织面料的主成分,以100~200倍放大后拍摄的纯纺面料或主成分含量在50%以上的混纺面料图像为研究对象,提出了一种基于深度卷积神经网络的纺织面料主成分分类方法。首先对纺织图像进行裁剪及颜色空间转换;然后将图像输入卷积神经网络进行织物面料主成分分类训练;最后将待分类的纺织面料图像输入训练后的卷积神经网络中,得出纺织面料主成分分类结果。对棉、涤纶、腈纶、羊毛、天丝5类共4497张图像进行实验,实验结果显示:该方法对5类织物面料主成分分类准确率为96.53%;与其他卷积神经网络模型相比大幅降低了训练时间,减小了网络规模,提高了分类准确率。 展开更多
关键词 纺织面料成分分类 卷积神经网络 空洞卷积 深度可分离卷积
面向移动平台的轻量级卷积神经网络架构 预览
6
作者 胡挺 祝永新 +2 位作者 田犁 封松林 汪辉 《计算机工程》 CAS CSCD 北大核心 2019年第1期17-22,共6页
针对深度神经网络在移动平台上存在准确度低、过拟合等问题,提出一种轻量级的卷积神经网络架构。将3×3的深度可分离卷积替换SqueezeNet网络模型基本模块Fire中的标准3×3卷积核,并构建SparkNet的网络结构,替换模型卷积得到网... 针对深度神经网络在移动平台上存在准确度低、过拟合等问题,提出一种轻量级的卷积神经网络架构。将3×3的深度可分离卷积替换SqueezeNet网络模型基本模块Fire中的标准3×3卷积核,并构建SparkNet的网络结构,替换模型卷积得到网络变形结构。实验结果表明,与SqueezeNet网络结构相比,该架构可以提高网络模型的计算速度,有效降低网络模型规模并减少参数数量。 展开更多
关键词 深度学习 卷积神经网络 深度可分离卷积 神经网络压缩 轻量级
在线阅读 下载PDF
应用改进卷积神经网络的网络安全态势预测方法 预览
7
作者 张任川 张玉臣 +1 位作者 刘璟 范钰丹 《计算机工程与应用》 CSCD 北大核心 2019年第6期86-93,共8页
针对神经网络态势预测模型训练复杂度高的问题,提出了一种基于改进卷积神经网络的态势预测方法。结合深度可分离卷积与分解卷积技术的优点,提出了一种基于复合卷积结构的改进型卷积神经网络安全态势预测模型,实现了态势要素和态势值的... 针对神经网络态势预测模型训练复杂度高的问题,提出了一种基于改进卷积神经网络的态势预测方法。结合深度可分离卷积与分解卷积技术的优点,提出了一种基于复合卷积结构的改进型卷积神经网络安全态势预测模型,实现了态势要素和态势值的映射。实验仿真结果证明,相比于已有的典型预测方法,该方法明显降低了复杂度,减少了预测时间,并提升了预测准确率。 展开更多
关键词 态势预测 神经网络 卷积神经网络 复合卷积结构
在线阅读 下载PDF
基于卷积神经网络的左心室超声图像特征点定位 预览
8
作者 周玉金 王晓东 +2 位作者 张力戈 朱锴 姚宇 《计算机应用》 CSCD 北大核心 2019年第4期1201-1207,共7页
针对传统级联卷积神经网络(CNN)在左心室超声图像中定位准确度较低的问题,提出一种融合更快速区域卷积神经网络(Faster-RCNN)模型提取区域的级联卷积神经网络,实现对超声图像中左心室心内膜和心外膜轮廓特征点的定位。首先,采用两级级... 针对传统级联卷积神经网络(CNN)在左心室超声图像中定位准确度较低的问题,提出一种融合更快速区域卷积神经网络(Faster-RCNN)模型提取区域的级联卷积神经网络,实现对超声图像中左心室心内膜和心外膜轮廓特征点的定位。首先,采用两级级联的方式改进传统级联卷积神经网络的网络结构,第一级网络利用一个改进的卷积网络粗略定位左心室心内膜和心外膜联合的特征点,第二级网络使用四个改进的卷积网络分别对心内膜特征点和心外膜特征点进行位置微调,之后定位输出左心室心内膜和心外膜联合的轮廓特征点位置;然后,将改进的级联卷积神经网络与目标区域提取融合,即利用Faster-RCNN模型提取包含左心室的目标区域并将目标区域送入改进的级联卷积神经网络;最后,由粗到细对左心室轮廓特征点进行定位。实验结果表明,与传统级联卷积神经网络相比,所提方法在左心室超声图像上的定位效果更好,更逼近真实值,在均方根误差的评价标准下,特征点定位准确度提升了32.6个百分点。 展开更多
关键词 超声心动图 左心室 特征点定位 卷积神经网络 级联卷积神经网络
在线阅读 下载PDF
基于深度学习的超声自动测量左室射血分数的研究 预览
9
作者 蒋建慧 姚静 +3 位作者 张艳娟 赵海桐 许迪 罗守华 《临床超声医学杂志》 CSCD 2019年第1期70-74,共5页
目的为提高基于超声心动图Simpson法的左室射血分数(LVEF)测量的效率,提出一种基于深度学习自动测量LVEF的方法。方法首先,建立卷积神经网络,利用收集的38153幅标记的数据对网络进行训练测试和验证,将采集到的超声心动图数据自动分成5类... 目的为提高基于超声心动图Simpson法的左室射血分数(LVEF)测量的效率,提出一种基于深度学习自动测量LVEF的方法。方法首先,建立卷积神经网络,利用收集的38153幅标记的数据对网络进行训练测试和验证,将采集到的超声心动图数据自动分成5类,获取心尖二腔(A2C)和四腔(A4C)切面;其次,建立全卷积神经网络,以VGG-19为主干架构,利用收集的3871幅A2C和4679幅A4C数据进行训练测试和验证,对自动获得A2C和A4C的左室进行自动分割,计算LVEF。结果该方法获得A2C和A4C的准确率达96.8%,分割真阳性率达88.8%,所得LVEF误差率为0.038947。结论深度学习自动测量LVEF的方法较传统方法精度和效率更高,具有较好的临床应用价值。 展开更多
关键词 超声心动描记术 左室射血分数 深度学习 卷积神经网络 卷积神经网络
在线阅读 下载PDF
深度学习图像修复方法综述
10
作者 强振平 何丽波 +1 位作者 陈旭 徐丹 《中国图象图形学报》 CSCD 北大核心 2019年第3期447-463,共17页
目的图像修复是计算机视觉领域研究的一项重要内容,其目的是根据图像中已知内容来自动地恢复丢失的内容,在图像编辑、影视特技制作、虚拟现实及数字文化遗产保护等领域都具有广泛的应用价值。而近年来,随着深度学习在学术界和工业界的... 目的图像修复是计算机视觉领域研究的一项重要内容,其目的是根据图像中已知内容来自动地恢复丢失的内容,在图像编辑、影视特技制作、虚拟现实及数字文化遗产保护等领域都具有广泛的应用价值。而近年来,随着深度学习在学术界和工业界的广泛研究,其在图像语义提取、特征表示、图像生成等方面的应用优势日益突出,使得基于深度学习的图像修复方法的研究成为了国内外一个研究热点,得到了越来越多的关注。为了使更多研究者对基于深度学习的图像修复理论及其发展进行探索,本文对该领域研究现状进行综述。方法首先对基于深度学习图像修复方法提出的理论依据进行分析;然后对其中涉及的关键技术进行研究;总结了近年来基于深度学习的主要图像修复方法,并依据修复网络的结构对现有方法进行了分类,即分为基于卷积自编码网络结构的图像修复方法、基于生成式对抗网络结构的图像修复方法和基于循环神经网络结构的图像修复方法。结果在基于深度学习的图像修复方法中,深度学习网络的设计和训练过程中的损失函数的选择是其重要的内容,各类方法各有优缺点和其适用范围,如何提高修复结果语义的合理性、结构及细节的正确性,一直是研究者们努力的方向,基于此目的,本文通过实验分析总结了各类方法的主要特点、存在的问题、对训练样本的要求、主要应用领域及参考代码。结论基于深度学习图像修复领域的研究已经取得了一些显著进展,但目前深度学习在图像修复中的应用仍处于起步阶段,主要研究的内容也仅仅是利用待修复图像本身的图像内容信息,因此基于深度学习的图像修复仍是一个极具挑战的课题。如何设计具有普适性的修复网络,提高修复结果的准确性,还需要更加深入的研究。 展开更多
关键词 图像修复 深度学习 卷积神经网络 生成式对抗网络 循环神经网络 深度卷积自编码器网络
两层级联卷积神经网络的人脸检测
11
作者 张海涛 李美霖 董帅含 《中国图象图形学报》 CSCD 北大核心 2019年第2期203-214,共12页
目的传统人脸检测方法因人脸多姿态变化和人脸面部特征不完整等问题,导致检测效果不佳。为解决上述问题,提出一种两层级联卷积神经网络(TC_CNN)人脸检测方法。方法首先,构建两层卷积神经网络模型,利用前端卷积神经网络模型对人脸图像进... 目的传统人脸检测方法因人脸多姿态变化和人脸面部特征不完整等问题,导致检测效果不佳。为解决上述问题,提出一种两层级联卷积神经网络(TC_CNN)人脸检测方法。方法首先,构建两层卷积神经网络模型,利用前端卷积神经网络模型对人脸图像进行特征粗略提取,再利用最大值池化方法对粗提取得到的人脸特征进行降维操作,输出多个疑似人脸窗口;其次,将前端粗提取得到的人脸窗口作为后端卷积神经网络模型的输入进行特征精细提取,并通过池化操作得到新的特征图;最后,通过全连接层判别输出最佳检测窗口,完成人脸检测全过程。结果实验选取FDDB人脸检测数据集中包含人脸多姿态变化以及人脸面部特征信息不完整等情况的图像进行测试,TC_CNN方法人脸检测率达到96. 39%,误检率低至3. 78%,相比当前流行方法在保证算法效率的同时检测率均有提高。结论两层级联卷积神经网络人脸检测方法能够在人脸多姿态变化和面部特征信息不完整等情况下实现精准检测,保证较高的检测率,有效降低误检率,方法具有较好的鲁棒性和泛化能力。 展开更多
关键词 人脸检测 卷积神经网络 十折交叉验证 两层级联卷积神经网络 最大值池化
基于深度网络分级特征图的图像超分辨率重建
12
作者 张一帆 杨欣 +1 位作者 朱松岩 周大可 《云南民族大学学报:自然科学版》 CAS 2019年第2期172-176,共5页
从低分辨率图像中提取特征图恢复高分辨率图像中的高频信息是超分辨率重建的一个关键问题,针对该问题提出一个新的基于卷积神经网络的超分辨率重建算法.网络结构由卷积层与子像素卷积组成,特征提取网络中卷积层提取低分辨率图像的特征,... 从低分辨率图像中提取特征图恢复高分辨率图像中的高频信息是超分辨率重建的一个关键问题,针对该问题提出一个新的基于卷积神经网络的超分辨率重建算法.网络结构由卷积层与子像素卷积组成,特征提取网络中卷积层提取低分辨率图像的特征,重建网络中子像素卷积神经网络作为上采样算子.针对不能充分利用多级特征图的问题,采用跳跃连接和特征图联结在特征提取网络末端跨通道融合特征图,同时降低特征图的维度.并在此基础上再次提取特征图应用于重建.实验结果表明,算法在PSNR、SSIM和人类视觉效果上与其他基于深度学习的算法相比有着显著的提高. 展开更多
关键词 超分辨率重建 深度学习 卷积神经网络 子像素卷积神经网络
在线阅读 免费下载
基于卷积神经网络的图像编辑传播 预览
13
作者 刘震 陈丽娟 汪家悦 《浙江工业大学学报》 CAS 北大核心 2019年第1期86-91,共6页
对于单幅图像进行编辑传播的问题,引入组合卷积来代替传统的卷积,用以提取更加有效的特征。组合卷积由可变形卷积和可分离卷积组成,通过这个结构可以增强模型的泛化能力,并且减少模型的参数量和卷积的操作数。同时引入对错分的背景类进... 对于单幅图像进行编辑传播的问题,引入组合卷积来代替传统的卷积,用以提取更加有效的特征。组合卷积由可变形卷积和可分离卷积组成,通过这个结构可以增强模型的泛化能力,并且减少模型的参数量和卷积的操作数。同时引入对错分的背景类进行加权的有偏损失函数,以防止与背景类相似度较高的像素点被误着色而造成颜色溢出。实验结果表明:使用组合卷积和有偏损失函数构建的双分支的卷积神经网络模型,可以实现单幅图像的有效上色,并且能够改善颜色溢出的情况。 展开更多
关键词 卷积神经网络 编辑传播 组合卷积 有偏损失函数
在线阅读 下载PDF
基于多孔卷积神经网络的图像深度估计模型 预览
14
作者 廖斌 李浩文 《计算机应用》 CSCD 北大核心 2019年第1期267-274,共8页
针对在传统机器学习方法下单幅图像深度估计效果差、深度值获取不准确的问题,提出了一种基于多孔卷积神经网络(ACNN)的深度估计模型。首先,利用卷积神经网络(CNN)逐层提取原始图像的特征图;其次,利用多孔卷积结构,将原始图像中的空间信... 针对在传统机器学习方法下单幅图像深度估计效果差、深度值获取不准确的问题,提出了一种基于多孔卷积神经网络(ACNN)的深度估计模型。首先,利用卷积神经网络(CNN)逐层提取原始图像的特征图;其次,利用多孔卷积结构,将原始图像中的空间信息与提取到的底层图像特征相互融合,得到初始深度图;最后,将初始深度图送入条件随机场(CRF),联合图像的像素空间位置、灰度及其梯度信息对所得深度图进行优化处理,得到最终深度图。在客观数据集上完成了模型可用性验证及误差估计,实验结果表明,该算法获得了更低的误差值和更高的准确率,均方根误差(RMSE)比基于机器学习的算法平均降低了30.86%,而准确率比基于深度学习的算法提高了14.5%,所提算法在误差数据和视觉效果方面都有较大提升,表明该模型能够在图像深度估计中获得更好的效果。 展开更多
关键词 多孔卷积 卷积神经网络 条件随机场 深度估计 深度学习
在线阅读 下载PDF
用于网络入侵检测的多尺度卷积CNN模型 预览
15
作者 刘月峰 王成 +1 位作者 张亚斌 苑江浩 《计算机工程与应用》 CSCD 北大核心 2019年第3期90-95,153共7页
鉴于卷积神经网络在计算机视觉等诸多领域取得的巨大成就,提出一种将多尺度卷积神经网络应用到网络入侵检测领域的方法。该方法将IDS中的网络数据转化成卷积神经网络能够输入的数据,利用不同尺度卷积核对大量高维无标签原始数据进行不... 鉴于卷积神经网络在计算机视觉等诸多领域取得的巨大成就,提出一种将多尺度卷积神经网络应用到网络入侵检测领域的方法。该方法将IDS中的网络数据转化成卷积神经网络能够输入的数据,利用不同尺度卷积核对大量高维无标签原始数据进行不同层次特征提取,再采用BN方法优化网络结构学习率,从而获得原始数据的最优特征表示。实验采用KDDcup99数据集进行实验测试,与经典的模型相比,结果表明MSCNN模型不仅收敛速度快,而且误检率平均降低4.02%,准确率平均提高4.38%。因此MSCNN方法是一种可行且高效的方法,为网络入侵检测系统领域提供一种全新的思路。 展开更多
关键词 入侵检测 深度学习 卷积神经网络 BN算法 多尺度卷积
在线阅读 下载PDF
基于可分离残差模块的精确实时语义分割
16
作者 路文超 庞彦伟 +1 位作者 何宇清 王建 《激光与光电子学进展》 CSCD 北大核心 2019年第5期89-99,共11页
针对当前智能驾驶领域场景理解中的语义分割算法无法同时满足高精度和高效率要求的问题,提出了精确高效的语义分割算法。基于可分离残差模块和降采样模块,设计了充分利用其学习能力和学习效率的高效精确语义分割网络结构。利用Cityscape... 针对当前智能驾驶领域场景理解中的语义分割算法无法同时满足高精度和高效率要求的问题,提出了精确高效的语义分割算法。基于可分离残差模块和降采样模块,设计了充分利用其学习能力和学习效率的高效精确语义分割网络结构。利用Cityscapes数据集,在图像处理效率12frame/s的基础上达到分割精度67.86%。研究结果表明,所提方法在精度和效率上均能达到较好的效果,实现了精度和效率的平衡。 展开更多
关键词 图像处理 语义分割 卷积神经网络 深度可分离卷积 可分离残差模块
基于特征图切分的轻量级卷积神经网络 预览
17
作者 张雨丰 郑忠龙 +5 位作者 刘华文 向道红 何小卫 李知菲 何依然 KHODJA Abd Erraouf 《模式识别与人工智能》 CSCD 北大核心 2019年第3期237-246,共10页
卷积神经网络模型所需的存储容量和计算资源远超出移动和嵌入式设备的承载量,因此文中提出轻量级卷积神经网络架构(SFNet).SFNet架构引入切分模块的概念,通过将网络的输出特征图进行“切分”处理,每个特征图片段分别输送给不同大小的卷... 卷积神经网络模型所需的存储容量和计算资源远超出移动和嵌入式设备的承载量,因此文中提出轻量级卷积神经网络架构(SFNet).SFNet架构引入切分模块的概念,通过将网络的输出特征图进行“切分”处理,每个特征图片段分别输送给不同大小的卷积核进行卷积运算,将运算得到的特征图拼接后由大小为1×1的卷积核进行通道融合.实验表明,相比目前通用的轻量级卷积神经网络,在卷积核数目及输入特征图通道数相同时,SFNet的参数和计算量更少,分类正确率更高.相比标准卷积,在网络复杂度大幅降低的情况下,切分模块的分类正确率持平甚至更高. 展开更多
关键词 卷积神经网络 轻量级网络 切分模块 特征图切分 卷积
在线阅读 下载PDF
构建带空洞卷积的深度神经网络重建高分辨率图像 预览
18
作者 张焯林 赵建伟 曹飞龙 《模式识别与人工智能》 CSCD 北大核心 2019年第3期259-267,共9页
为了在滤波器参数保持不变的情形下扩大感受野,在非常深的卷积网络超分辨率模型网络中引入空洞卷积方法.首先,分析不同膨胀系数组合的空洞卷积块的感受野,并选择更好的结构作为空洞卷积块.然后,堆叠卷积块并加入残差连接构成深度卷积网... 为了在滤波器参数保持不变的情形下扩大感受野,在非常深的卷积网络超分辨率模型网络中引入空洞卷积方法.首先,分析不同膨胀系数组合的空洞卷积块的感受野,并选择更好的结构作为空洞卷积块.然后,堆叠卷积块并加入残差连接构成深度卷积网络.最后,使用多种训练技巧对网络进行重新训练.实验表明,对于数据集Set5上较大的扩大因子,文中构建网络可提升重建效果,并在视觉上也有明显优势. 展开更多
关键词 超分辨率重建 卷积神经网络 空洞卷积 残差连接
在线阅读 下载PDF
基于改进卷积神经网络与听觉谱图的乐器识别 预览
19
作者 王飞 于凤芹 《计算机工程》 CAS CSCD 北大核心 2019年第1期199-205,共7页
针对传统乐器识别需要音乐的低级声频特征及识别性能依赖特征选取的问题,利用接近人耳感知且低冗余度的听觉谱图作为5层深度卷积网络的输入,逐层抽象出音色的高级时频表示用于乐器识别。为有效捕获听觉谱图中的时频信息,将卷积网络第1... 针对传统乐器识别需要音乐的低级声频特征及识别性能依赖特征选取的问题,利用接近人耳感知且低冗余度的听觉谱图作为5层深度卷积网络的输入,逐层抽象出音色的高级时频表示用于乐器识别。为有效捕获听觉谱图中的时频信息,将卷积网络第1层矩形卷积核改进为频率、时间轴上的多尺度卷积核。在IOWA乐器库上进行的仿真实验结果表明,该神经网能获得96.95%的识别准确率,优于使用单一卷积核的神经网,在相同的网络结构下,基于听觉谱图得到的识别准确率较基于梅尔频率倒谱系数(MFCC)、语谱图分别高出9.11%、3.54%,且对打击乐器与同族乐器的错分率均较小。 展开更多
关键词 听觉谱图 卷积神经网络 卷积 时频特征 乐器识别
在线阅读 下载PDF
基于卷积神经网络的MRI脑瘤图像分割方法研究
20
作者 李芳 谢铭超 王春兴 《山东师范大学学报:自然科学版》 CAS 2019年第1期96-101,共6页
本文研究卷积神经网络在脑瘤图像分割中的应用.脑瘤位置易变,形状大小不定等特性促使我们去探索一个更加高效,更加准确,鲁棒性更好的方法.本文利用相同感受野下多个卷积层级联的非线性远大于单一卷积层的特性,将小卷积核级联层加入网络... 本文研究卷积神经网络在脑瘤图像分割中的应用.脑瘤位置易变,形状大小不定等特性促使我们去探索一个更加高效,更加准确,鲁棒性更好的方法.本文利用相同感受野下多个卷积层级联的非线性远大于单一卷积层的特性,将小卷积核级联层加入网络,并加入恒等映射来促进梯度流,使得训练速度增加.除此之外,网络利用多尺度操作同时提取同一像素点不同像素范围内的特征信息.最后将得到的结果送入卷积层构成全卷积神经网络,实现像素级别上的脑瘤分割.测试阶段在BRATS2013测试集上进行,研究过证明该模型能够得到较好的分割效果(Challenge:0.84,0.83,0.85;Leaderboard:0.77,079,0.78). 展开更多
关键词 卷积神经网络 脑瘤分割 卷积网络
在线阅读 免费下载
上一页 1 2 152 下一页 到第
使用帮助 返回顶部 意见反馈