期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于粒子群优化算法的PSO-BP海底声学底质分类方法 预览 被引量:3
1
作者 陈佳兵 吴自银 +3 位作者 赵荻能 周洁琼 李守军 尚继宏 《海洋学报》 CSCD 北大核心 2017年第9期51-57,共7页
利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要... 利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特征向量,利用PSO-BP方法对海底底质进行分类识别。实验表明,3类底质分类精度均大于90%,高于BP神经网络70%左右的分类精度,表明PSO-BP方法可有效应用于海底底质的分类识别。 展开更多
关键词 基于粒子优化算法BP神经网络 特征向量 粒子算法 底质分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈