针对响应共变特性的稳健参数设计问题,在多任务高斯过程(multi-task Gaussian processes,MTGP)建模框架下,结合质量损失函数和考虑响应不确定性的优化函数构建了一个考虑输出响应不确定性的MTGP(uncertainty of MTGP,UNMTGP)优化模型。...针对响应共变特性的稳健参数设计问题,在多任务高斯过程(multi-task Gaussian processes,MTGP)建模框架下,结合质量损失函数和考虑响应不确定性的优化函数构建了一个考虑输出响应不确定性的MTGP(uncertainty of MTGP,UNMTGP)优化模型。首先,利用MTGP模型拟合实验数据,构建考虑响应间共变特性对优化结果影响的多元高斯模型。其次,提出考虑输出响应不确定性的优化目标函数,构建多响应稳健优化模型。最后,结合全局优化方法,获得最优参数设计。此外,结合真实案例,利用质量损失函数的相关评价指标,论证所提方法的有效性。结果表明,所提方法考虑了响应共变特性和输出响应不确定性对优化结果的影响,有效改善了模型的预测质量,提升了输出响应的稳健性。展开更多
针对模型响应不确定性的稳健参数设计问题,在高斯过程回归(Gaussian process regression, GPR)建模的框架下,结合贝叶斯超参数最大后验(Maximum a posteriori estimation, MAP)估计和多目标线性加权方法构建一个新的优化模型.首先,利用...针对模型响应不确定性的稳健参数设计问题,在高斯过程回归(Gaussian process regression, GPR)建模的框架下,结合贝叶斯超参数最大后验(Maximum a posteriori estimation, MAP)估计和多目标线性加权方法构建一个新的优化模型.首先,利用MAP方法获得最优超参数组合,构建高斯回归模型;然后,考虑响应不确定性与响应之间的交互效应,采用线性加权准则,构建多响应稳健优化模型;最后,利用聚类分析方法获得最优参数解.该方法考虑了输出响应不确定性对优化结果的影响,权衡了最优因子水平与多元质量特性之间的关系.结合实际案例和软件仿真对所提出方法进行实证研究,结果表明,该方法能够较好地兼顾输出响应的最优性和稳健性,从而实现稳健参数设计.展开更多
文摘针对响应共变特性的稳健参数设计问题,在多任务高斯过程(multi-task Gaussian processes,MTGP)建模框架下,结合质量损失函数和考虑响应不确定性的优化函数构建了一个考虑输出响应不确定性的MTGP(uncertainty of MTGP,UNMTGP)优化模型。首先,利用MTGP模型拟合实验数据,构建考虑响应间共变特性对优化结果影响的多元高斯模型。其次,提出考虑输出响应不确定性的优化目标函数,构建多响应稳健优化模型。最后,结合全局优化方法,获得最优参数设计。此外,结合真实案例,利用质量损失函数的相关评价指标,论证所提方法的有效性。结果表明,所提方法考虑了响应共变特性和输出响应不确定性对优化结果的影响,有效改善了模型的预测质量,提升了输出响应的稳健性。
基金The research was partly supported by the Beijing Natural Science Foundation (Grant No. Z180006)the National Nature Science Foundation of China (Grant No. 11722113).
文摘针对模型响应不确定性的稳健参数设计问题,在高斯过程回归(Gaussian process regression, GPR)建模的框架下,结合贝叶斯超参数最大后验(Maximum a posteriori estimation, MAP)估计和多目标线性加权方法构建一个新的优化模型.首先,利用MAP方法获得最优超参数组合,构建高斯回归模型;然后,考虑响应不确定性与响应之间的交互效应,采用线性加权准则,构建多响应稳健优化模型;最后,利用聚类分析方法获得最优参数解.该方法考虑了输出响应不确定性对优化结果的影响,权衡了最优因子水平与多元质量特性之间的关系.结合实际案例和软件仿真对所提出方法进行实证研究,结果表明,该方法能够较好地兼顾输出响应的最优性和稳健性,从而实现稳健参数设计.