期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
变分不等式问题不动点问题和零点问题的公共元的强收敛定理 认领
1
作者 贾倩倩 高兴慧 《贵州师范大学学报:自然科学版》 CAS 2020年第5期39-44,共6页
设Banach空间是一致光滑的和严格凸的并且具有K-K性质,在此空间中设计一种新的收缩投影迭代法去逼近一个极大单调算子的零点集与一个半相对非扩张映像的不动点集以及宽松的协和算子的有限个变分不等式问题解集的公共元,并利用所设计的... 设Banach空间是一致光滑的和严格凸的并且具有K-K性质,在此空间中设计一种新的收缩投影迭代法去逼近一个极大单调算子的零点集与一个半相对非扩张映像的不动点集以及宽松的协和算子的有限个变分不等式问题解集的公共元,并利用所设计的算法证明了公共元的强收敛定理。 展开更多
关键词 半相对非扩张映像 极大单调算子 变分不等式 强收敛
在线阅读 免费下载
求解双层凸优化问题的Forward-Backward分裂算法 认领
2
作者 李明川 叶明露 《西华师范大学学报:自然科学版》 2020年第1期46-51,共6页
Forward-Backward分裂算法是求解极大单调算子和问题以及极小化具有可分结构的凸函数和问题的有效算法。本文利用该算法在Hilbert空间中构造出了求解双层优化问题的分裂算法。与已有文献相比,所提算法不仅在参数的选取上更加灵活,而且... Forward-Backward分裂算法是求解极大单调算子和问题以及极小化具有可分结构的凸函数和问题的有效算法。本文利用该算法在Hilbert空间中构造出了求解双层优化问题的分裂算法。与已有文献相比,所提算法不仅在参数的选取上更加灵活,而且本文还证明了该算法生成的点列能收敛到双层优化问题的解。 展开更多
关键词 极大单调算子 双层优化 非扩张映射 Forward-Backward算法 弱收敛列
在线阅读 下载PDF
具有动态边界条件和一般记忆核的Cahn-Hilliard方程全局解的存在唯一性 认领
3
作者 赵夕雅 蒲志林 罗嘉蓓 《西华师范大学学报:自然科学版》 2020年第1期71-76,共6页
主要研究一类具有动态边界条件和一般记忆项的Cahn-Hilliard方程,先将方程写成变分形式,再运用极大单调算子理论证明了局部解的存在唯一性。进一步,用能量不等式证明了能量方程有界且只与初值有关,从而得到全局解的存在唯一性。
关键词 动态边界条件 记忆核 极大单调算子 解的存在唯一性 全局解
在线阅读 下载PDF
改进的广义压缩邻近点算法及收敛性证明 认领
4
作者 赵新宇 张珏莹 段培超 《数学学习与研究:教研版》 2018年第21期11-12,共2页
本文运用压缩邻近点算法,求解极大单调算子的零点,提出如下迭代格式:x n+1=λnf(x n)+γnx n+δnJ cn(x n).在Hilbert空间中,证明了该算法的强收敛性.
关键词 极大单调算子 不动点 黏滞迭代 非扩张映像
在线阅读 下载PDF
求解双层凸优化问题的Forward-Backward分裂算法及其应用 认领 被引量:1
5
作者 唐玥 郭科 赵世莲 《西华师范大学学报:自然科学版》 2018年第1期74-77,共4页
Forward-Backward分裂算法是求解凸优化问题中的一个重要方法,本文考虑利用Forward-Backward分裂算法来求解双层凸优化问题,在一定的条件下,我们证明了算法的收敛性。由于变分不等式可以写成两个算子和的包含问题,因此作为应用,我... Forward-Backward分裂算法是求解凸优化问题中的一个重要方法,本文考虑利用Forward-Backward分裂算法来求解双层凸优化问题,在一定的条件下,我们证明了算法的收敛性。由于变分不等式可以写成两个算子和的包含问题,因此作为应用,我们将得到的算法应用于研究变分不等式约束的双层优化问题,给出了其收敛性。文中所得到的结果,推广了Sabach和Shimrit等人的结果。 展开更多
关键词 单调包含 极大单调算子 双层优化 凸极小化 分裂算法 变分不等式
在线阅读 下载PDF
H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统 认领
6
作者 魏利 张瑞兰 Ravi P.Agarwal 《应用数学学报》 CSCD 北大核心 2018年第5期653-666,共14页
利用H增生映射的性质,证明了含有广义(p,q)-Laplacian算子的非线性椭圆系统存在唯一解的结论.证明方法简单且研究结果展示了H增生映射和非线性椭圆系统之间的关系,推广和补充了以往的相关研究工作.
关键词 H增生映射 极大单调算子 (p q)-Laplacian算子 非线性椭圆系统
带有内部扰动的Timoshenko梁系统的指数稳定性 认领 被引量:1
7
作者 张丽萍 刘东毅 张国山 《数学物理学报:A辑》 CSCD 北大核心 2017年第1期185-198,共14页
该文考虑了带有内部扰动的Timoshenko梁的稳定性问题.根据滑模控制的思想,设计非线性分布反馈控制器来降低额外扰动的影响.由于所导出的受控系统是非线性系统,应用非线性极大单调算子理论和变分原理分析非线性闭环系统的可解性.并... 该文考虑了带有内部扰动的Timoshenko梁的稳定性问题.根据滑模控制的思想,设计非线性分布反馈控制器来降低额外扰动的影响.由于所导出的受控系统是非线性系统,应用非线性极大单调算子理论和变分原理分析非线性闭环系统的可解性.并且通过Lyapunov方法证明闭环系统的指数稳定性. 展开更多
关键词 指数稳定性 TIMOSHENKO梁 极大单调算子 内部扰动 非线性分布反馈控制
在线阅读 下载PDF
零点问题不动点问题和平衡问题的混杂算法 认领 被引量:2
8
作者 高兴慧 常乐 高怀丽 《贵州大学学报:自然科学版》 2016年第2期1-5,共5页
在具有K-K性质的严格凸的一致光滑Banach空间的框架下,构造了一种新的关于拟φ-非扩张映像的不动点集与极大单调算子的零点集以及一个平衡问题解集的公共元素的混杂投影迭代方法,而且利用所设计之算法证明了其公共元素之强收敛定理。作... 在具有K-K性质的严格凸的一致光滑Banach空间的框架下,构造了一种新的关于拟φ-非扩张映像的不动点集与极大单调算子的零点集以及一个平衡问题解集的公共元素的混杂投影迭代方法,而且利用所设计之算法证明了其公共元素之强收敛定理。作为应用,给出了寻找一个凸泛函的极小值点问题。 展开更多
关键词 平衡问题 拟φ-非扩张映像 极大单调算子
在线阅读 下载PDF
具有临界指数和Robin边界的Kirchhoff方程解的存在性 认领
9
作者 杨婧 蒲志林 奉卫 《四川师范大学学报:自然科学版》 CAS 北大核心 2016年第1期26-32,共7页
主要研究带有非线性边界耗散和临界指数的Kirchhoff方程在t→∞时的渐进性态,证明弱解的存在性.首先,利用极大单调算子的理论证明局部解的存在唯一性,其次用能量等式证明全局解的存在性并给出其变分形式.
关键词 Robin边界条件 临界指数 极大单调算子 解的存在性 能量等式 变分形式
在线阅读 免费下载
平衡问题不动点问题和零点问题的公共元的强收敛定理 认领 被引量:4
10
作者 高兴慧 高怀丽 常乐 《宁夏大学学报:自然科学版》 CAS 2016年第2期135-140,共6页
在具有K-K性质的严格凸的一致光滑Banach空间中,设计了一种新的收缩投影迭代方法用以逼近一族拟φ-非扩张映像的公共不动点集与一族极大单调算子的公共零点集以及一个平衡问题解集的公共元素,并利用所设计的算法证明了公共元的强收敛定... 在具有K-K性质的严格凸的一致光滑Banach空间中,设计了一种新的收缩投影迭代方法用以逼近一族拟φ-非扩张映像的公共不动点集与一族极大单调算子的公共零点集以及一个平衡问题解集的公共元素,并利用所设计的算法证明了公共元的强收敛定理.作为应用,给出了一个寻找变分不等式的解的问题. 展开更多
关键词 平衡问题 拟φ-非扩张映像 极大单调算子 零点问题
在线阅读 下载PDF
极大单调算子零点的强收敛定理 认领
11
作者 叶静妮 《福州大学学报:自然科学版》 CAS 北大核心 2016年第3期331-336,共6页
利用广义投影算子技巧,在一致光滑、一致凸的Banach空间中,建立一种关于极大单调算子零点的具有误差项的投影算法,并在适当的条件下,证明了该算法的强收敛性.所得结果在关于极大单调算子的零点计算中有新颖性,改进了众多熟知的结果.
关键词 极大单调算子 零点 强收敛 误差项
在线阅读 免费下载
近似邻近点算法收敛性的一个注记 认领
12
作者 李伟佳 张万里 林安 《纯粹数学与应用数学》 2016年第6期624-629,共6页
近似邻近点算法在最优化理论与方法研究中具有重要作用.在不同误差准则下,近似邻近点算法具有不同的收敛性.利用极大单调算子等工具给出了一个具体的例子,解释了在一些误差准则下近似邻近点算法的收敛性.
关键词 近似邻近点算法 极大单调算子 误差准则
在线阅读 免费下载
具混合边界的双曲型微分方程非平凡解的存在性 认领
13
作者 魏利 刘元星 《应用数学》 CSCD 北大核心 2016年第3期494-502,共9页
本文将具混合边界的一类双曲型微分方程分解为两个线性算子和三个非线性算子.证明了这些算子具有单调性质,由此得到一类算子方程存在解的结论,进而证明具混合边界的双曲型非线性微分方程存在唯一非退化解的结论.此文是对含有p-Laplacia... 本文将具混合边界的一类双曲型微分方程分解为两个线性算子和三个非线性算子.证明了这些算子具有单调性质,由此得到一类算子方程存在解的结论,进而证明具混合边界的双曲型非线性微分方程存在唯一非退化解的结论.此文是对含有p-Laplacian算子的非线性椭圆和非线性抛物方程相关研究工作的推广,并采用了一些新的证明技巧. 展开更多
关键词 极大单调算子 强迫映射 单调算子 次微分 双曲微分方程 混合边界
在线阅读 免费下载
广义均衡问题、极大单调算子和全局拟-Φ-渐近非扩张半群的公共元的强收敛定理 认领
14
作者 吴燕林 《福州大学学报:自然科学版》 CAS 北大核心 2015年第6期733-737,共5页
针对广义均衡问题、极大单调算子和全局拟-Φ-渐近非扩张半群的公共元,提出一个新的迭代算法,在适当的条件下,证明了由此迭代算法生成的序列的强收敛定理.
关键词 极大单调算子 全局拟-Φ-渐近非扩张半群 广义均衡问题 公共不动点
在线阅读 免费下载
含有广义(p,q)-Laplacian算子的抛物型方程组解的存在性 认领
15
作者 魏利 刘元星 《系统科学与数学》 CSCD 北大核心 2015年第9期1092-1103,共12页
利用极大单调算子和m增生映射值域的扰动结果,研究了一类含有广义(p,q)-Laplacian算子并具有混合边值条件的抛物型方程组,证明了方程组解的存在性的结果.文中所用方法是对以往一些研究工作的推广和补充.
关键词 极大单调算子 m增生映射 (p q)-Laplacian算子 抛物型方程组
一类Curvature方程组解的迭代逼近 认领
16
作者 魏利 师爱芬 《应用数学》 CSCD 北大核心 2015年第4期761-770,共10页
本文给出一类Curvature方程组解的构造,并建立其解与有限个极大单调算子公共零点之间的关系.借助于极大单调算子的广义豫解式,设计新的投影迭代算法,利用Lyapunov泛函、广义投影映射和保核收缩映射等工具,证明迭代序列在Banach空间中强... 本文给出一类Curvature方程组解的构造,并建立其解与有限个极大单调算子公共零点之间的关系.借助于极大单调算子的广义豫解式,设计新的投影迭代算法,利用Lyapunov泛函、广义投影映射和保核收缩映射等工具,证明迭代序列在Banach空间中强收敛到有限个极大单调算子公共零点的结论.进而得到Curvature方程组解的迭代逼近序列.推广和补充了以往的相关研究成果. 展开更多
关键词 广义豫解式 保核收缩映射 LYAPUNOV泛函 极大单调算子 零点 Curvature方程组
在线阅读 免费下载
不动点集和零点集公共元的强弱收敛性 认领
17
作者 张丽娟 佟慧 《数学学报》 SCIE CSCD 北大核心 2015年第4期601-612,共12页
在Hilbert空间中,为了找到渐近严格伪压缩映射的不动点集,极大单调算子与逆强单调映射和的零点集的公共元,文中引进两种迭代格式,在某些条件下得到迭代序列的强弱收敛定理.
关键词 渐近严格伪压缩映射 逆强单调映射 极大单调算子 非扩张映射 不动点
一类p-Laplacian型Neumann边值问题非平凡解的存在性及迭代算法研究 认领 被引量:1
18
作者 魏利 陈蕊 《高校应用数学学报:A辑》 CSCD 北大核心 2015年第2期180-190,共11页
首先将一类p-Laplacian型Neumann边值问题转化为含有极大单调算子的算子方程的形式,得到算子方程解的存在性结论,进而证明p-Laplacian型Neumann边值问题有非平凡解;其次,借助于极大单调算子的相对预解式构造出强收敛到极大单调算子... 首先将一类p-Laplacian型Neumann边值问题转化为含有极大单调算子的算子方程的形式,得到算子方程解的存在性结论,进而证明p-Laplacian型Neumann边值问题有非平凡解;其次,借助于极大单调算子的相对预解式构造出强收敛到极大单调算子零点的迭代序列;最后,建立p-Laplacian型Neumann边值问题的解与极大单调算子零点的关系,得到解的迭代逼近序列。推广和补充了以往的相关研究成果。 展开更多
关键词 p-Laplacian型边值问题 相对预解式 非平凡解 极大单调算子 迭代算法
在线阅读 下载PDF
带约束凸规划的算法及收敛性分析 认领
19
作者 翟传翠 《无线互联科技》 2014年第1期113-114,共2页
凸规划是非线性规划中一种重要的特殊形式,它具有很好的性质。1976年Rockafellar利用极大单调算子的性质提出了求解无约束凸规划的临近点算法,文章根据凸规划的性质、最优性条件等将这一算法推广到带约束凸规划上。
关键词 凸规划 极大单调算子 临近点算法
在线阅读 下载PDF
一类Curvature方程的两种边值问题解的存在性 认领 被引量:1
20
作者 魏利 谭瑞林 樊树新 《应用数学》 CSCD 北大核心 2014年第1期131-139,共9页
利用含有伪单调算子的变分不等式解的存在性定理,证明一类具有Dirichlet边值条件的Curvature方程在W^1,p(Ω)空间中存在唯一解.深入研究具有Dirichlet边值条件的Curvature方程和具有Neumann边值条件的Curvature方程之间的关系,利... 利用含有伪单调算子的变分不等式解的存在性定理,证明一类具有Dirichlet边值条件的Curvature方程在W^1,p(Ω)空间中存在唯一解.深入研究具有Dirichlet边值条件的Curvature方程和具有Neumann边值条件的Curvature方程之间的关系,利用极大单调算子值域的扰动理论,给出具有Neumann边值条件的Curvature方程在W^1,p(Ω)空间中存在解的充分条件.文中采用一些新的证明技巧,推广和补充了以往的相关研究成果. 展开更多
关键词 单调算子 极大单调算子 值域扰动 Curvature方程 Dirichlet边值 NEUMANN边值
在线阅读 免费下载
上一页 1 2 6 下一页 到第
使用帮助 返回顶部 意见反馈