期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
生成式对抗网络研究与应用进展 预览
1
作者 柴梦婷 朱远平 《计算机工程》 CAS CSCD 北大核心 2019年第9期222-234,共13页
基于零和博弈思想的生成式对抗网络(GAN)可通过无监督学习获得数据的分布,并生成较逼真的数据。基于GAN的基础概念及理论框架,研究各类GAN模型及其在特定领域的应用情况,从数据相似性度量、模型框架、训练方法3个方面进行分析,对GAN改... 基于零和博弈思想的生成式对抗网络(GAN)可通过无监督学习获得数据的分布,并生成较逼真的数据。基于GAN的基础概念及理论框架,研究各类GAN模型及其在特定领域的应用情况,从数据相似性度量、模型框架、训练方法3个方面进行分析,对GAN改进与扩展的相关研究成果进行总结,并从图像合成、风格迁移等应用领域展开讨论,归纳出GAN的优势与不足,同时对其应用前景进行展望。分析结果表明,GAN的学习能力与可塑性强,改进潜力大,应用范围广,但其发展面临的挑战是训练过程不稳定,且缺乏生成数据质量的客观评价标准。 展开更多
关键词 生成式对抗网络 生成式模型 对抗学习 深度学习 人工智能
在线阅读 下载PDF
深度学习图像修复方法综述
2
作者 强振平 何丽波 +1 位作者 陈旭 徐丹 《中国图象图形学报》 CSCD 北大核心 2019年第3期447-463,共17页
目的图像修复是计算机视觉领域研究的一项重要内容,其目的是根据图像中已知内容来自动地恢复丢失的内容,在图像编辑、影视特技制作、虚拟现实及数字文化遗产保护等领域都具有广泛的应用价值。而近年来,随着深度学习在学术界和工业界的... 目的图像修复是计算机视觉领域研究的一项重要内容,其目的是根据图像中已知内容来自动地恢复丢失的内容,在图像编辑、影视特技制作、虚拟现实及数字文化遗产保护等领域都具有广泛的应用价值。而近年来,随着深度学习在学术界和工业界的广泛研究,其在图像语义提取、特征表示、图像生成等方面的应用优势日益突出,使得基于深度学习的图像修复方法的研究成为了国内外一个研究热点,得到了越来越多的关注。为了使更多研究者对基于深度学习的图像修复理论及其发展进行探索,本文对该领域研究现状进行综述。方法首先对基于深度学习图像修复方法提出的理论依据进行分析;然后对其中涉及的关键技术进行研究;总结了近年来基于深度学习的主要图像修复方法,并依据修复网络的结构对现有方法进行了分类,即分为基于卷积自编码网络结构的图像修复方法、基于生成式对抗网络结构的图像修复方法和基于循环神经网络结构的图像修复方法。结果在基于深度学习的图像修复方法中,深度学习网络的设计和训练过程中的损失函数的选择是其重要的内容,各类方法各有优缺点和其适用范围,如何提高修复结果语义的合理性、结构及细节的正确性,一直是研究者们努力的方向,基于此目的,本文通过实验分析总结了各类方法的主要特点、存在的问题、对训练样本的要求、主要应用领域及参考代码。结论基于深度学习图像修复领域的研究已经取得了一些显著进展,但目前深度学习在图像修复中的应用仍处于起步阶段,主要研究的内容也仅仅是利用待修复图像本身的图像内容信息,因此基于深度学习的图像修复仍是一个极具挑战的课题。如何设计具有普适性的修复网络,提高修复结果的准确性,还需要更加深入的研究。 展开更多
关键词 图像修复 深度学习 卷积神经网络 生成式对抗网络 循环神经网络 深度卷积自编码器网络
用于图像超分辨率重构的深度学习方法综述
3
作者 王威 张彤 王新 《小型微型计算机系统》 CSCD 北大核心 2019年第9期1891-1896,共6页
随着深度学习算法首次被应用于图像超分辨率重构,基于深度学习的重构方法取得了比传统图像超分辨率重构方法更好的重构效果.随后,一系列改进的深度学习算法相继提出,重构效果也不断提升.本文系统地总结了基于深度学习的图像超分辨率重... 随着深度学习算法首次被应用于图像超分辨率重构,基于深度学习的重构方法取得了比传统图像超分辨率重构方法更好的重构效果.随后,一系列改进的深度学习算法相继提出,重构效果也不断提升.本文系统地总结了基于深度学习的图像超分辨率重构方法,主要可以分为:基于直连的浅层网络重构方法,基于深层特征的深层网络重构方法和基于生成式对抗网络重构方法.并且对比分析了不同网络模型的特点和不足.在主流数据集上对各种深度学习网络模型进行了比较,并根据当前基于深度学习模型的图像超分辨率重构方法的发展趋势,对基于深度学习模型的图像超分辨率重构方法未来的研究方向做了展望. 展开更多
关键词 图像超分辨率重构 卷积神经网络 残差学习 密集连接网络 生成式对抗网络
生成式对抗网络研究综述
4
作者 罗佳 黄晋英 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第3期74-84,共11页
深度学习领域一个十分活跃的分支—生成式对抗网络(GAN)已经成为人工智能学界一个热门的研究方向。生成式对抗网络采用无监督的学习方式,自动从源数据中进行学习,在不需要人工对数据集进行标记的情况下就可以产生令人惊叹的效果。阐述了... 深度学习领域一个十分活跃的分支—生成式对抗网络(GAN)已经成为人工智能学界一个热门的研究方向。生成式对抗网络采用无监督的学习方式,自动从源数据中进行学习,在不需要人工对数据集进行标记的情况下就可以产生令人惊叹的效果。阐述了GAN的背景、基本思想,对其相关理论、训练机制和应用研究进行了梳理,总结了GAN的常见网络构架、训练技巧与模型评估标准,还进行了GAN与其他生成模型VAE、衍生模型的对比,最后进行分析总结,指出GAN的优缺点并对未来发展方向进行展望。 展开更多
关键词 深度学习 生成式对抗网络 无监督学习 机器学习 对抗训练
生成式对抗网络模型研究 预览
5
作者 姜玉宁 李劲华 赵俊莉 《青岛大学学报:自然科学版》 CAS 2019年第3期31-38,43共9页
在系统的总结GAN原始模型的提出背景、基本原理与基本框架的基础上,归纳总结了基于距离度量与能量模型角度而提出的衍进模型f-GAN、WGAN、WGAN-GP、EBGAN;针对解决原始GAN模型的不稳定性而提出的衍进模型DCGAN、Improved GAN、PGGAN;基... 在系统的总结GAN原始模型的提出背景、基本原理与基本框架的基础上,归纳总结了基于距离度量与能量模型角度而提出的衍进模型f-GAN、WGAN、WGAN-GP、EBGAN;针对解决原始GAN模型的不稳定性而提出的衍进模型DCGAN、Improved GAN、PGGAN;基于模型结合角度而提出的GAN+LAP、GAN+LSTM、GAN+CVAE、GAN+AE以及针对增强模型实用性而提出的衍进模型SGAN、CGAN、InfoGAN。对GAN的一些具体应用领域和场景进行了梳理和介绍。 展开更多
关键词 深度学习 生成式对抗网络 生成模型 对抗学习 数据生成
在线阅读 下载PDF
生成式对抗网络GAN的研究现状与应用 预览
6
作者 于梦珂 《无线互联科技》 2019年第9期25-26,29共3页
21世纪以来,在大数据、云计算和物联网等新兴技术不断成熟的大背景下,人工智能得到了第3次井喷式发展。其中,以深度学习为基础的图像处理、语音识别等技术的发展尤为迅猛。而生成式对抗网络是如今深度学习领域中最为前沿也是最令人着迷... 21世纪以来,在大数据、云计算和物联网等新兴技术不断成熟的大背景下,人工智能得到了第3次井喷式发展。其中,以深度学习为基础的图像处理、语音识别等技术的发展尤为迅猛。而生成式对抗网络是如今深度学习领域中最为前沿也是最令人着迷的领域之一,它自2014年10月被Ian Goodfellow等提出以后,就一直受到人们的广泛关注与追捧。文章从生成式对抗网络的基本原理出发,分析了生成式对抗网络的研究现状及其主要的应用领域,并对生成式对抗网络进行了总结与展望。 展开更多
关键词 生成式对抗网络 深度学习 神经网络 人工智能
在线阅读 下载PDF
生成式对抗网络的通信网络安全技术 预览
7
作者 夏蕊 马宏斌 《移动通信》 2019年第8期21-24,共4页
为了更好地解决通信网络中存在的恶意攻击,保护用户数据安全,通过生成式对抗网络的生成模型和判别模型相互博弈不断优化,构造成最优判别器,可以对数据攻击进行检测。主要介绍生成式对抗网络(GANs)和Wasserstein生成式对抗网络的区别、... 为了更好地解决通信网络中存在的恶意攻击,保护用户数据安全,通过生成式对抗网络的生成模型和判别模型相互博弈不断优化,构造成最优判别器,可以对数据攻击进行检测。主要介绍生成式对抗网络(GANs)和Wasserstein生成式对抗网络的区别、模型及算法,通过研究GAN与WGAN梯度消失问题,实验证实WGAN可以有效地解决网络收敛性差、模型自由不可控、训练不稳定等问题,具有更好的性能。 展开更多
关键词 生成式对抗网络 深度学习 网络安全 梯度法
在线阅读 下载PDF
采用改进生成式对抗网络的电力系统量测缺失数据重建方法
8
作者 王守相 陈海文 +1 位作者 潘志新 王建明 《中国电机工程学报》 EI CSCD 北大核心 2019年第1期56-64,共9页
量测数据的采集、传输、转换各个环节都有可能发生故障或受到干扰,导致数据出现缺失。传统重建方法仅考虑单一数据分布规律,忽略了电力系统中量测点、采集变量之间的相关性及历史的负荷变化规律,重建精度低。该文提出了基于改进生成式... 量测数据的采集、传输、转换各个环节都有可能发生故障或受到干扰,导致数据出现缺失。传统重建方法仅考虑单一数据分布规律,忽略了电力系统中量测点、采集变量之间的相关性及历史的负荷变化规律,重建精度低。该文提出了基于改进生成式对抗网络(wassersteingenerative adversarial networks,WGAN)的量测缺失值重建方法,并设计了适用于该问题的WGAN网络结构。通过WGAN的无监督训练,神经网络将自动学习到量测之间相关性、负荷波动规律等难以显式建模的复杂时空关系。利用真实性约束及上下文相似性约束优化隐变量,使得训练后的生成器将能够生成高精度的重建数据。文中方法完全依靠数据驱动,不涉及显式建模步骤,在大量量测出现缺失的情况下仍具有较高的重建精度。算例中分析了量测缺失数量与重建误差之间的关系,证明了文中方法性能稳定。对于算例中长期缺失的特定量测,文中方法所重建的数据能够体现量测真实的时序特性。 展开更多
关键词 电力系统量测 生成式对抗网络 缺失数据重建 卷积神经网络 时序特性
多尺度卷积神经网络的噪声模糊图像盲复原 预览
9
作者 刘鹏飞 赵怀慈(指导) 曹飞道 《红外与激光工程》 EI CSCD 北大核心 2019年第4期300-308,共9页
图像盲复原是从一幅观测的模糊图像恢复出模糊核和清晰图像,传统盲去卷积算法采用简化模型估计模糊核,导致预测模糊核与真实值误差较大,最终复原结果不理想。针对此问题提出一种基于改进残差模块的多尺度卷积神经网络模型,采用端到端模... 图像盲复原是从一幅观测的模糊图像恢复出模糊核和清晰图像,传统盲去卷积算法采用简化模型估计模糊核,导致预测模糊核与真实值误差较大,最终复原结果不理想。针对此问题提出一种基于改进残差模块的多尺度卷积神经网络模型,采用端到端模式,无需估计模糊核。提出了一种基于限制网络输入的改进Wasserstein GAN (WGAN),增加了一层输入限制层,能够限定参数初始值,提高了网络收敛速度。设计了多重损失函数,融合了基于多尺度网络的感知损失和基于条件式生成对抗网络的对抗损失。实验结果表明:所提方法在定量和定性评价指标上优于已有的代表性方法,并且运行速度比相近算法快了4倍。 展开更多
关键词 多尺度卷积神经网络 多重损失函数 生成式对抗网络 噪声模糊图像
在线阅读 下载PDF
基于生成式对抗网络的结构化数据表生成模型 预览
10
作者 宋珂慧 张莹 +1 位作者 张江伟 袁晓洁 《计算机研究与发展》 EI CSCD 北大核心 2019年第9期1832-1842,共11页
在机器学习和数据库等领域,高质量数据集的合成一直以来是一个非常重要且充满挑战性的问题.其中,合成的高质量数据集可用来改善模型,尤其是深度学习模型的训练过程.一个健壮的模型训练过程需要大量已标注的数据集,获取这些数据集的一种... 在机器学习和数据库等领域,高质量数据集的合成一直以来是一个非常重要且充满挑战性的问题.其中,合成的高质量数据集可用来改善模型,尤其是深度学习模型的训练过程.一个健壮的模型训练过程需要大量已标注的数据集,获取这些数据集的一种方法是通过领域专家的手动标注,这种方法不仅代价大还容易出错,因此由模型自动合成高质量数据集的方法更为合理.近年来,由于计算机视觉领域的飞速发展,已经有不少致力于图像数据集合成的研究,但是这些模型不能直接应用在结构化数据表上,并且据调研,对这类数据的相关研究几乎没有.因此,提出了一个针对结构化数据表的生成模型TableGAN,该模型是生成式对抗网络(generative adversarial network, GAN)家族的一种变体,通过对抗训练的方式提高生成模型的性能.针对结构化数据的特征改变了传统GAN模型的内部结构,包括优化函数等,使其能够生成高质量的结构化数据用于改善模型的训练过程.通过在真实数据集上的大量实验表明了此模型的有效性,即在扩大后的数据集上训练模型的效果有明显提升. 展开更多
关键词 深度学习 生成模型 神经网络 生成式对抗网络 分类
在线阅读 下载PDF
利用生成噪声提高语音增强方法的泛化能力 预览
11
作者 袁文浩 娄迎曦 +1 位作者 梁春燕 夏斌 《电子学报》 EI CAS CSCD 北大核心 2019年第4期791-797,共7页
如何提高对未知噪声类型的泛化能力是有监督语音增强方法中亟待解决的重要问题,通过对大量不同类型噪声进行建模,深度神经网络成为了解决该问题的有效手段.为了进一步提高基于深度神经网络的语音增强方法的泛化能力,本文基于生成式对抗... 如何提高对未知噪声类型的泛化能力是有监督语音增强方法中亟待解决的重要问题,通过对大量不同类型噪声进行建模,深度神经网络成为了解决该问题的有效手段.为了进一步提高基于深度神经网络的语音增强方法的泛化能力,本文基于生成式对抗网络(Generative Adversarial Networks,GAN)设计了能够由真实噪声数据生成新的噪声类型的NoiseGAN;通过在训练集中增加生成噪声类型,提高训练集噪声类型的多样性,从而达到提高语音增强模型泛化能力的目的.不同结构的网络下的语音增强实验结果表明,本文提出的NoiseGAN能够生成新的噪声类型,具备提高训练集噪声类型多样性的能力,有效提高了语音增强模型在未知噪声类型下的泛化能力. 展开更多
关键词 语音增强 生成式对抗网络 泛化能力 深度神经网络
在线阅读 下载PDF
生成式对抗网络在图像补全中的应用 预览
12
作者 时澄 潘斌 +3 位作者 郭小明 李芹芹 张露月 钟凡 《计算机科学与探索》 CSCD 北大核心 2019年第8期1402-1410,共9页
图像补全是数字图像处理领域的重要研究方向,具有广阔的应用前景。提出了一种基于生成式对抗网络(GAN)的图像补全方法。生成式对抗网络模型由生成器模型和判别器模型两部分构成,通过采用卷积神经网络(CNN)实现。首先,通过生成器模型对... 图像补全是数字图像处理领域的重要研究方向,具有广阔的应用前景。提出了一种基于生成式对抗网络(GAN)的图像补全方法。生成式对抗网络模型由生成器模型和判别器模型两部分构成,通过采用卷积神经网络(CNN)实现。首先,通过生成器模型对图像的缺失区域进行补全;然后,利用判别器模型对图像的补全效果进行判别。采用马尔科夫随机场(MRF)与均方误差(MSE)相结合的损失函数训练生成器模型,加强对图像纹理细节的处理能力。实验结果证明,基于生成式对抗网络的图像补全方法,相较于其他现有的方法,具有更好的补全效果。 展开更多
关键词 图像补全 生成式对抗网络 卷积神经网络 马尔科夫随机场 均方误差
在线阅读 下载PDF
一种基于生成对抗网络的行为数据集扩展方法 预览
13
作者 牛斌 吴鹏 +1 位作者 马利 刘景巍 《计算机技术与发展》 2019年第7期43-48,共6页
深度学习作为人工神经网络的分支,在图像识别领域有广泛的应用,但其数据集的不足导致模型学习不够完善。通过对深度学习的数据规模要求进行分析,针对人体行为识别中的应用,发现人体数据集的采集工作是一个极具耗时耗力的工程,很难满足... 深度学习作为人工神经网络的分支,在图像识别领域有广泛的应用,但其数据集的不足导致模型学习不够完善。通过对深度学习的数据规模要求进行分析,针对人体行为识别中的应用,发现人体数据集的采集工作是一个极具耗时耗力的工程,很难满足目前深度学习网络的需求。为了解决这一难题,提出了一种依靠原有的小规模数据集产生大量可靠数据集的半监督深度学习模型。通过将循环神经网络和生成式对抗网络相结合的方法使循环神经网络学习到数据的序列关系和特征,使生成式对抗网络产生合理数据进而扩展人体行为数据集。依靠该网络结构,可以很好地分析出采集数据的特征,并且依据这些特征可以生成大量的合理的数据,后经过数据处理等工作,形成可用于模型训练的可靠数据集,缓解了深度学习工作中数据集紧缺的问题。 展开更多
关键词 数据生成 深度学习 循环神经网络 生成式对抗网络
在线阅读 下载PDF
关于命名实体识别的生成式对抗网络的研究
14
作者 冯建周 马祥聪 +1 位作者 刘亚坤 宋沙沙 《小型微型计算机系统》 CSCD 北大核心 2019年第6期1191-1196,共6页
本文结合条件生成式对抗网络(CGAN)和改进的Wasserstein生成式对抗网络(WGAN-GP),提出一种适合于命名实体识别任务的条件Wasserstein生成式对抗网络模型(CWGAN).该模型借鉴CGAN以文本描述为条件的图像概率分布的思想,来完成以句子序列... 本文结合条件生成式对抗网络(CGAN)和改进的Wasserstein生成式对抗网络(WGAN-GP),提出一种适合于命名实体识别任务的条件Wasserstein生成式对抗网络模型(CWGAN).该模型借鉴CGAN以文本描述为条件的图像概率分布的思想,来完成以句子序列为条件获得标注序列概率分布的任务.该模型的生成器和判别器都采用BiLSTM结构,不同的是生成器生成命名实体标签的概率分布,判别器则为生成器的生成质量打分并反馈给生成器,生成器根据反馈更新梯度从而提升生成标签概率的质量.另外,CWGAN采用梯度惩罚的方法来保证梯度在反向传播的过程中保持平稳,通过拉近真实样本分布和生成样本之间的Wasserstein距离,优化目标函数.最后通过实验验证了该方法的可行性和优越性. 展开更多
关键词 命名实体识别 生成式对抗网络 BiLSTM Wasserstein距离 CWGAN
基于条件梯度Wasserstein生成对抗网络的图像识别 预览
15
作者 何子庆 聂红玉 +1 位作者 刘月 尹洋 《计算机测量与控制》 2019年第6期157-162,共6页
生成式对抗网络GAN功能强大,但是具有收敛速度慢、训练不稳定、生成样本多样性不足等缺点;该文结合条件深度卷积对抗网络CDCGAN和带有梯度惩罚的Wasserstein生成对抗网络WGAN-GP的优点,提出了一个混合模型-条件梯度Wasserstein生成对抗... 生成式对抗网络GAN功能强大,但是具有收敛速度慢、训练不稳定、生成样本多样性不足等缺点;该文结合条件深度卷积对抗网络CDCGAN和带有梯度惩罚的Wasserstein生成对抗网络WGAN-GP的优点,提出了一个混合模型-条件梯度Wasserstein生成对抗网络CDCWGAN-GP,用带有梯度惩罚的Wasserstein距离训练对抗网络保证了训练稳定性且收敛速度更快,同时加入条件c来指导数据生成;另外为了增强判别器提取特征的能力,该文设计了全局判别器和局部判别器一起打分,最后提取判别器进行图像识别;实验结果证明,该方法有效的提高了图像识别的准确率。 展开更多
关键词 生成式对抗网络 条件模型 Wesserstein距离 梯度惩罚 全局和局部一致性 图像识别
在线阅读 下载PDF
基于迁移学习的双层生成式对抗网络 预览
16
作者 邢恩旭 吴小勇 李雅娴 《计算机工程与应用》 CSCD 北大核心 2019年第15期38-46,103共10页
在生成式对抗网络的对抗训练中,目标样本训练集不足会导致模型无法准确学习到对应的特征,但对于需要人工制作、标记的目标样本训练集又很难获取。针对这一问题,提出了基于迁移学习的双层生成式对抗网络模型,在第一层网络中通过伪目标样... 在生成式对抗网络的对抗训练中,目标样本训练集不足会导致模型无法准确学习到对应的特征,但对于需要人工制作、标记的目标样本训练集又很难获取。针对这一问题,提出了基于迁移学习的双层生成式对抗网络模型,在第一层网络中通过伪目标样本让模型学习到目标样本在结构空间的大致分布后,利用迁移学习的思想进行模型迁移,并在第二层网络中根据少量目标样本进行调整。实验中,验证了该模型在中文字体生成与图片框架图转换中的提高,有效地在少量目标样本训练集中训练出更好的模型。 展开更多
关键词 生成式对抗网络 迁移学习 目标样本 字体生成
在线阅读 下载PDF
生成式对抗网络在语音增强方面的研究 预览
17
作者 孙成立 王海武 《计算机技术与发展》 2019年第2期152-156,161共6页
伴随着人工智能的兴起,各种深度学习模型应运而生,生成式对抗网络(generative adversarial networks,GAN)作为其中的一种深度学习模型成为了研究热点。GAN已成功应用在图像处理中,但将其应用在语音增强方面是需要研究的问题。GAN应用在... 伴随着人工智能的兴起,各种深度学习模型应运而生,生成式对抗网络(generative adversarial networks,GAN)作为其中的一种深度学习模型成为了研究热点。GAN已成功应用在图像处理中,但将其应用在语音增强方面是需要研究的问题。GAN应用在语音增强的研究方法与GAN的实质是一样的,是通过构造两个模型,即生成模型(generative model)和判别模型(discriminative model),也叫做生成器(generator)和判别器(discriminator)。两者通过互相竞争、对抗的形式来学习训练,GAN最终要实现的目标是生成新的数据,即实现去噪。对GAN在语音增强方面的应用进行了研究,提出了使用传统的GAN数学模型用于语音增强进行建模,同时改进了GAN的数学模型并加入了稀疏因式,将GAN增强后的语音与其他传统的语音增强方法进行对比。实验结果表明,使用GAN增强后的语音的segSNR和PESQ的得分要比传统的语音增强方法的得分高,从而证明GAN比其他传统的语音增强方法更具优越性。 展开更多
关键词 人工智能 生成式对抗网络 生成 判别器 语音增强
在线阅读 下载PDF
生成式对抗网络图像增强研究综述 预览
18
作者 马春光 郭瑶瑶 +1 位作者 武朋 刘海波 《信息网络安全》 CSCD 北大核心 2019年第5期10-21,共12页
近年来,生成式对抗网络(GAN)为图像增强提供了新的技术和手段,具有比传统深度学习更强大的特征学习和表达能力,在图像增强领域取得了显著成功。文章首先介绍了GAN模型的基本思想和原理,分析了GAN各个变体改进的方式及优缺点;其次从图像... 近年来,生成式对抗网络(GAN)为图像增强提供了新的技术和手段,具有比传统深度学习更强大的特征学习和表达能力,在图像增强领域取得了显著成功。文章首先介绍了GAN模型的基本思想和原理,分析了GAN各个变体改进的方式及优缺点;其次从图像质量提高、图像生成、图像补全和其他图像处理的应用等方面分析了GAN应用于图像增强的研究现状;最后归纳总结了GAN模型与其在图像增强中面临的问题,并对问题的解决方案及未来应用进行了总结展望。 展开更多
关键词 生成式对抗网络 深度学习 生成模型 图像增强
在线阅读 下载PDF
基于生成式对抗网络的字体风格迁移方法 预览
19
作者 白海娟 周未 +1 位作者 王存睿 王磊 《大连民族大学学报》 2019年第3期250-256,共7页
针对风格多样的中文字体设计和复杂操作的问题,提出一种生成式对抗网络的汉字风格迁移和字库设计方法。将宋体与黑体作为测试数据集,将瑞虎宋体作为目标数据集,通过生成式对抗网络对抗训练方法,使宋体与黑体字风格转换为瑞虎宋体风格。... 针对风格多样的中文字体设计和复杂操作的问题,提出一种生成式对抗网络的汉字风格迁移和字库设计方法。将宋体与黑体作为测试数据集,将瑞虎宋体作为目标数据集,通过生成式对抗网络对抗训练方法,使宋体与黑体字风格转换为瑞虎宋体风格。通过实验生成的字体图像轮廓更加平滑和美观,表明本文提出的方法能够显著提高对字形设计的工作效率。 展开更多
关键词 字体设计 自动化生成 生成式对抗网络
在线阅读 下载PDF
基于生成式对抗网络的裂缝图像修复方法 预览
20
作者 胡敏 李良福 《计算机应用与软件》 北大核心 2019年第6期202-208,共7页
提出一种基于生成式对抗网络的裂缝图像修复方法。在修复过程中,对障碍物所在位置进行信息擦除获得待修复图像。使用生成式对抗网络生成相应的裂缝图像,为待修复图像和生成图像分别覆盖距离加权掩膜,并计算获得修复块。对修复块与待修... 提出一种基于生成式对抗网络的裂缝图像修复方法。在修复过程中,对障碍物所在位置进行信息擦除获得待修复图像。使用生成式对抗网络生成相应的裂缝图像,为待修复图像和生成图像分别覆盖距离加权掩膜,并计算获得修复块。对修复块与待修复图像的拼接图像进行优化获得最终修复结果。实验结果表明,该方法可对裂缝图像进行了准确修复。与传统的修复方法相比,使用该方法修复后的裂缝图像较之前方法峰值信噪比提升了0.6~0.9dB,实现了在有限的裂缝数据集条件下,生成大量还原度较高的裂缝图像。 展开更多
关键词 路面裂缝 深度学习 生成式对抗网络 图像修复
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部 意见反馈