期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于Bi-LSTM-CRF算法的气象预警信息质控系统的实现 预览
1
作者 张淑静 苗开超 +4 位作者 张亚力 杨彬 李腾 刘宜轩 汪翔 《计算机与现代化》 2019年第6期111-115,共5页
本文采用双向长短期记忆网络条件随机场(Bi-LSTM-CRF)算法,通过双向循环神经网络(Bi-LSTM)对已有的合法预警信息文本数据集和开放域中文分析公开数据集进行训练;采用CRF序列标注法有效地结合了预警前后的标签信息对分词进行序列标注;使... 本文采用双向长短期记忆网络条件随机场(Bi-LSTM-CRF)算法,通过双向循环神经网络(Bi-LSTM)对已有的合法预警信息文本数据集和开放域中文分析公开数据集进行训练;采用CRF序列标注法有效地结合了预警前后的标签信息对分词进行序列标注;使用该算法建立的气象预警信息质控系统已应用在安徽省突发事件预警信息发布系统,在实际应用的过程中充分证明基于神经网络的气象预警信息质控系统能直接有效地对新的预警信息中可能含有的敏感字(词)、错别字等进行智能监测,以帮助监测人员进行气象预警判断,从而可以对发布的气象预警信息起到质量把关的作用。 展开更多
关键词 Bi-LSTM-CRF 中文分词 气象预警 信息质控 智能检测
在线阅读 下载PDF
基于Bi-LSTM-CRF模型的维吾尔语词干提取的研究 预览
2
作者 古丽尼格尔·阿不都外力 吐尔根·依布拉音 +1 位作者 卡哈尔江·阿比的热西提 王路路 《中文信息学报》 CSCD 北大核心 2019年第8期60-66,共7页
词干提取是维吾尔语自然语言处理中的基础性研究,其提取质量直接影响其他任务的性能。但目前维吾尔语词干提取研究存在过度切分、不切分和歧义切分等问题,这些问题导致词干提取质量不高,对后续任务的性能影响较大。因此该文提出了基于Bi... 词干提取是维吾尔语自然语言处理中的基础性研究,其提取质量直接影响其他任务的性能。但目前维吾尔语词干提取研究存在过度切分、不切分和歧义切分等问题,这些问题导致词干提取质量不高,对后续任务的性能影响较大。因此该文提出了基于Bi-LSTM-CRF的维吾尔语词干提取模型,将字符作为最小切分单位,选取维吾尔语字符特征、音类特征以及语音特征为候选特征,结合模型进行实验。实验表明,该文提出的Bi-LSTM-CRF模型在维吾尔语词干提取任务上,F1值达到了88%,在融入手工提取的候选特征之后,F1值提高了1.8个点,有效提高了词干提取的准确性,缓解了上述问题带来的影响。 展开更多
关键词 维吾尔语 词干提取 Bi-LSTM-CRF
在线阅读 下载PDF
基于异构数据联合训练的中文分词法 预览
3
作者 姜猛 王子牛 高建瓴 《电子科技》 2019年第4期29-32,59共5页
中文分词技术作为中文信息处理中的关键基础技术之一,基于深度学习模型的中文分词法受到广泛关注。然而,深度学习模型需要大规模数据训练才能获得良好的性能,而当前中文分词语料数据相对缺乏且标准不一。文中提出了一种简单有效的异构... 中文分词技术作为中文信息处理中的关键基础技术之一,基于深度学习模型的中文分词法受到广泛关注。然而,深度学习模型需要大规模数据训练才能获得良好的性能,而当前中文分词语料数据相对缺乏且标准不一。文中提出了一种简单有效的异构数据处理方法,对不同语料数据加上两个人工设定的标识符,使用处理过的数据应用于双向长短期记忆网络结合条件随机场(Bi-LSTM-CRF)的中文分词模型的联合训练。实验结果表明,基于异构数据联合训练的Bi-LSTM-CRF模型比单一数据训练的模型具有更好的分词性能。 展开更多
关键词 中文分词 深度学习 Bi-LSTM-CRF 异构数据 联合训练 语料库
在线阅读 免费下载
融合Gate过滤机制与深度Bi-LSTM-CRF的汉语语义角色标注 预览
4
作者 张苗苗 刘明童 +2 位作者 张玉洁 徐金安 陈钰枫 《情报工程》 2018年第2期45-53,共9页
语义角色标注的传统方法采用基于句法特征的统计机器学习方法.由于依存句法可以表示词语之间的语义关系,故在语义角色标注中取得了较好的性能;但该方法存在特征抽取过程繁琐,难以捕捉句子中长距离依赖等问题.随着深度学习的兴起,研究者... 语义角色标注的传统方法采用基于句法特征的统计机器学习方法.由于依存句法可以表示词语之间的语义关系,故在语义角色标注中取得了较好的性能;但该方法存在特征抽取过程繁琐,难以捕捉句子中长距离依赖等问题.随着深度学习的兴起,研究者将基于双向长短时记忆(BidirectionalLongShort-TermMemory,Bi-LSTM)神经网络模型用于语义角色标注.该模型可以自动学习特征,并对词与词之间的远距离依赖关系进行有效建模.本文提出融合Bi-LSTM-CRF模型与依存句法特征的方法,并且引入Gate过滤机制对词向量表示进行调整,以达到利用句法特征提高语义角色标注精度的同时,规避特征工程的繁琐.CPB上的实验结果表明,利用本文所提方法的汉语语义角色标注的F1值达到79.53%,比前人的方法有了较为显著的提升. 展开更多
关键词 汉语语义角色标注 Gate过滤机制 Bi-LSTM-CRF 依存句法分析
在线阅读 下载PDF
基于CRF和Bi-LSTM的保险名称实体识别 预览
5
作者 陈彦妤 杜明 《智能计算机与应用》 2018年第3期111-114,共4页
在保险领域智能问答应用研究中,用户提问时大量使用缩写、简写的保险名称,降低了问题语义理解的准确率。为解决这个问题,本文提出使用条件随机场(CRF)与双向长短记忆循环神经网络相结合的模型(Bi-LSTM-CRF),加入预先训练好的字嵌入... 在保险领域智能问答应用研究中,用户提问时大量使用缩写、简写的保险名称,降低了问题语义理解的准确率。为解决这个问题,本文提出使用条件随机场(CRF)与双向长短记忆循环神经网络相结合的模型(Bi-LSTM-CRF),加入预先训练好的字嵌入向量进行训练的方法来识别保险名称。实验结果表明,CRF结合双向的LSTM的方法相较于传统机器学习的方法,在保险领域命名实体的识别中具有更好的性能,显著提高了保险名称识别的准确率和召回率。 展开更多
关键词 Bi-LSTM-CRF 命名识别识别 保险智能问答
在线阅读 免费下载
基于Gate机制与Bi-LSTM-CRF的汉语语义角色标注 预览
6
作者 张苗苗 张玉洁 +2 位作者 刘明童 徐金安 陈钰枫 《计算机与现代化》 2018年第4期1-6,31共7页
目前,语义角色标注大多基于双向长短时记忆网络(Bi-LSTM)。但是,由于词向量表示由上下文窗口中的词嵌入拼接得到,导致其依赖于左右词嵌入的联合作用。针对该问题,引入Gate机制对词向量表示进行调整。为了获取更深层次的语义信息,对Bi-... 目前,语义角色标注大多基于双向长短时记忆网络(Bi-LSTM)。但是,由于词向量表示由上下文窗口中的词嵌入拼接得到,导致其依赖于左右词嵌入的联合作用。针对该问题,引入Gate机制对词向量表示进行调整。为了获取更深层次的语义信息,对Bi-LSTM的深度进行扩展。此外,引入标签转移概率矩阵进行约束,并且使用条件随机场(CRF)融合全局标签信息得出最优标注序列。实验结果表明,该方法使得汉语语义角色标注的F1值提高1.71%。 展开更多
关键词 汉语语义角色标注 Gate机制 Bi-LSTM-CRF 标签转移概率矩阵
在线阅读 下载PDF
基于BI-LSTM-CRF模型的中文分词法 预览 被引量:5
7
作者 张子睿 刘云清 《长春理工大学学报:自然科学版》 2017年第4期87-92,共6页
递归神经网络能够很好地处理序列标记问题,已被广泛应用到自然语言处理(NLP)任务中。提出了一种基于长短期记忆(LSTM)神经网络改进的双向长短期记忆条件随机场(BI-LSTM-CRF)模型,不仅保留了LSTM能够利用上下文信息的特性,同时能... 递归神经网络能够很好地处理序列标记问题,已被广泛应用到自然语言处理(NLP)任务中。提出了一种基于长短期记忆(LSTM)神经网络改进的双向长短期记忆条件随机场(BI-LSTM-CRF)模型,不仅保留了LSTM能够利用上下文信息的特性,同时能够通过CRF层考虑输出标签之间前后的依赖关系。利用该分词模型,通过加入预训练的字嵌入向量,以及使用不同词位标注集在Bakeoff2005数据集上进行的分词实验,结果表明:BI-LSTM-CRF模型比LSTM和双向LSTM模型具有更好的分词性能,同时具有很好地泛化能力;相比四词位,采用六词位标注集的神经网络模型能够取得更好的分词性能。 展开更多
关键词 中文分词 BI-LSTM-CRF 词位标注
在线阅读 下载PDF
基于Bi-LSTM-CRF网络的语义槽识别 预览 被引量:1
8
作者 徐梓翔 车万翔 刘挺 《智能计算机与应用》 2017年第6期91-94,共4页
自然语言理解任务的主要目标是运用自然语言处理的相关方法,对用户发出的语句进行解析,转化成结构化的语义表示。本文重点研究了基于语义槽抽取的自然语言理解方法。在基于语义槽抽取的自然语言理解任务中,任务的输入是用户的指令型语句... 自然语言理解任务的主要目标是运用自然语言处理的相关方法,对用户发出的语句进行解析,转化成结构化的语义表示。本文重点研究了基于语义槽抽取的自然语言理解方法。在基于语义槽抽取的自然语言理解任务中,任务的输入是用户的指令型语句,输出为指令的语义槽实体标注序列,如出发日期、出发地点等,故可将语义槽抽取任务看作类似于命名实体识别任务,以序列标注任务的方法解决。本文研究提出了基于Bi-LSTM-CRF模型的语义槽抽取方法,在英文语料ATIS上进行了实验。实验结果表明,基于Bi-LSTM-CRF网络的方法相比于传统机器学习的基准方法,结果得到了大幅度的提升。对于模型识别的结果,研究中采用F1值进行评价。 展开更多
关键词 语义槽抽取 自然语言理解 Bi-LSTM-CRF网络
在线阅读 免费下载
采用BI-LSTM-CRF模型的数值信息抽取 预览
9
作者 王竣平 白宇 蔡东风 《计算机应用与软件》 北大核心 2019年第5期138-144,共7页
数值信息是文本中的一种重要信息,含有主体、属性、属性值等元素。然而当前数值信息抽取方法对比较关系的表示比较单一,对于含有多个数值的句子,其数值信息抽取的效果不佳。根据文本中数量关系表述特征,提出一种数值信息表示方法和数值... 数值信息是文本中的一种重要信息,含有主体、属性、属性值等元素。然而当前数值信息抽取方法对比较关系的表示比较单一,对于含有多个数值的句子,其数值信息抽取的效果不佳。根据文本中数量关系表述特征,提出一种数值信息表示方法和数值信息抽取框架。根据数值信息中各个元素的特点,利用BI-LSTM-CRF模型对数值信息元素进行识别;利用语言特征判断属性值和其他元素之间的语义关系。该方法对数值信息抽取的准确率、召回率和F值分别达到0.775.0.752和0.763,优于现有的抽取的方法。 展开更多
关键词 数值信息表示 语义关系 BI-LSTM-CRF模型
在线阅读 下载PDF
基于深度学习的数据科学招聘实体自动抽取及分析研究
10
作者 王东波 胡昊天 +1 位作者 周鑫 朱丹浩 《图书情报工作》 CSSCI 北大核心 2018年第13期64-73,共10页
[目的/意义]数据科学作为一个融合诸多领域的新兴交叉学科正在快速形成。从数据科学招聘的公告信息中,抽取出相应的实体知识不仅有助于从市场的角度了解数据科学的发展动态,而且有助于改进数据科学教学的内容。[方法/过程]基于各大... [目的/意义]数据科学作为一个融合诸多领域的新兴交叉学科正在快速形成。从数据科学招聘的公告信息中,抽取出相应的实体知识不仅有助于从市场的角度了解数据科学的发展动态,而且有助于改进数据科学教学的内容。[方法/过程]基于各大招聘网站职位招聘公告,结合情报学的数据获取、标注和组织方法,构建数据科学招聘语料库并从中抽取相应的实体进行分析与研究。[结果/结论]在搜集到的11000篇经过标注的职位招聘公告语料的基础上,基于Bi-LSTM-CRF、CRF和Bi—LSTM模型,对数据科学招聘实体的抽取任务进行性能的对比,确定最终的数据科学招聘实体自动抽取模型,设计数据科学招聘实体自动抽取平台,并构建数据科学招聘实体网络。 展开更多
关键词 数据科学 条件随机场 深度学习 Bi-LSTM-CRF
理论术语抽取的深度学习模型及自训练算法研究 预览 被引量:2
11
作者 赵洪 王芳 《情报学报》 CSSCI CSCD 北大核心 2018年第9期923-938,共16页
理论术语的抽取是大规模文献内容分析和跨学科知识转移深度揭示的基础。作为一种特定类型的命名实体,理论术语涉及的学科多、文献规模大、特征复杂,也缺乏大规模的成熟语料,因而抽取难度较大。为提高理论术语的抽取性能并降低训练集的... 理论术语的抽取是大规模文献内容分析和跨学科知识转移深度揭示的基础。作为一种特定类型的命名实体,理论术语涉及的学科多、文献规模大、特征复杂,也缺乏大规模的成熟语料,因而抽取难度较大。为提高理论术语的抽取性能并降低训练集的人工标注代价,本文构建了面向理论术语抽取的深度学习模型,并研究了该模型中理论术语的特征构造和标注方法,同时也提出了一种自训练算法以实现模型的弱监督学习。通过实验对比,分别验证了本文模型和自训练算法的有效性,不仅为理论术语抽取提供了更加有效的通用方法,也为其他类型命名实体的识别研究提供了方法参考。 展开更多
关键词 理论术语抽取 深度学习 循环神经网络 Bi-LSTM-CRF 自训练
在线阅读 下载PDF
基于自主学习的专业领域文本DBLC分词模型
12
作者 冯国明 张晓冬 刘素辉 《数据分析与知识发现》 CSSCI CSCD 北大核心 2018年第5期40-47,共8页
【目的】提高对专业术语、名词占比较高的专业领域文本的分词准确度。【方法】提出将词典、统计、深度学习三者有机结合的DBLC模型,并编程实现。获取中国管理案例库中的部分案例作为专业领域语料,将其他几种已有分词模型作为对比对象进... 【目的】提高对专业术语、名词占比较高的专业领域文本的分词准确度。【方法】提出将词典、统计、深度学习三者有机结合的DBLC模型,并编程实现。获取中国管理案例库中的部分案例作为专业领域语料,将其他几种已有分词模型作为对比对象进行实验与分析。【结果】通过实验得到各模型在实验语料上的分词效果,DBLC模型在各评价指标上均优于其他模型,分词准确率达到96.3%。【局限】未对原词典词与新词做区别处理,没有考虑词典的存储结构问题,模型计算时间复杂度较高。【结论】本文提出的DBLC模型提高了专业领域文本的分词准确度,且该模型分词准确率与词典规模正相关。 展开更多
关键词 中文分词 序列标注 BI-LSTM-CRF 自主学习 基于词典的分词
基于神经网络的微博情绪识别与诱因抽取联合模型 预览
13
作者 张晨 钱涛 姬东鸿 《计算机应用》 CSCD 北大核心 2018年第9期2464-2468,2476共6页
情绪诱因抽取作为深层次的文本情绪理解已成为情绪分析任务中的新热点,当前研究通常把诱因抽取和情绪识别看作两个独立的任务,容易导致错误在任务间的传播问题。考虑到情绪识别及诱因抽取是相互作用的,以及微博文本中表情符通常表达文... 情绪诱因抽取作为深层次的文本情绪理解已成为情绪分析任务中的新热点,当前研究通常把诱因抽取和情绪识别看作两个独立的任务,容易导致错误在任务间的传播问题。考虑到情绪识别及诱因抽取是相互作用的,以及微博文本中表情符通常表达文本的情绪,提出了一种基于双向长短期记忆条件随机场(Bi-LSTM-CRF)模型的情绪诱因和表情符情绪识别的联合模型。该模型将情绪诱因抽取以及情绪识别形式化为一个统一的序列标注问题,充分利用了情绪诱因与情绪之间的互相作用,将情绪诱因的抽取和情绪识别同时进行。实验结果表明,该模型在诱因抽取任务中的F值为82.70%,在情绪识别任务中的F值为74.74%,相比串行模型的F值分别提高5.82和17.12个百分点,这个结果表明联合模型能够有效降低任务串行进行时的误差传递,同时提高了诱因抽取和情绪识别的F值。 展开更多
关键词 诱因抽取 情绪识别 表情符 序列标注 双向长短期记忆条件随机场 联合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈