Nonlinear oscillators and circuits can be coupled to reach synchronization and consensus. The occurrence of complete synchronization means that all oscillators can maintain the same amplitude and phase, and it is ofte...Nonlinear oscillators and circuits can be coupled to reach synchronization and consensus. The occurrence of complete synchronization means that all oscillators can maintain the same amplitude and phase, and it is often detected between identical oscillators. However, phase synchronization means that the coupled oscillators just keep pace in oscillation even though the amplitude of each node could be different. For dimensionless dynamical systems and oscillators, the synchronization approach depends a great deal on the selection of coupling variable and type. For nonlinear circuits, a resistor is often used to bridge the connection between two or more circuits, so voltage coupling can be activated to generate feedback on the coupled circuits. In this paper, capacitor coupling is applied between two Pikovsk-Rabinovich(PR) circuits, and electric field coupling explains the potential mechanism for differential coupling. Then symmetric coupling and cross coupling are activated to detect synchronization stability, separately. It is found that resistor-based voltage coupling via a single variable can stabilize the synchronization, and the energy flow of the controller is decreased when synchronization is realized. Furthermore, by applying appropriate intensity for the coupling capacitor, synchronization is also reached and the energy flow across the coupling capacitor is helpful in regulating the dynamical behaviors of coupled circuits, which are supported by a continuous energy exchange between capacitors and the inductor. It is also confirmed that the realization of synchronization is dependent on the selection of a coupling channel. The approach and stability of complete synchronization depend on symmetric coupling, which is activated between the same variables. Cross coupling between different variables just triggers phase synchronization. The capacitor coupling can avoid energy consumption for the case with resistor coupling, and it can also enhance the energy exchange between two coupled circuits.展开更多
Realization of a flexible and tunable coupling scheme among qubits is critical for scalable quantum information processing.Here,we design and characterize a tunable coupling element based on Josephson junction,which c...Realization of a flexible and tunable coupling scheme among qubits is critical for scalable quantum information processing.Here,we design and characterize a tunable coupling element based on Josephson junction,which can be adapted to an all-to-all connected circuit architecture where multiple Xmon qubits couple to a common coplanar waveguide resonator.The coupling strength is experimentally verified to be adjustable from 0 MHz to about 40 MHz,and the qubit lifetime can still be up to 12μs in the presence of the coupling element.展开更多
At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rota...At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design.展开更多
We discuss a particular four-dimensional cosmology based on non-minimal scalar tensor theories characterized by a supersymmetric loop corrected potential and a Hubble parameter defined as a function of the scalar fiel...We discuss a particular four-dimensional cosmology based on non-minimal scalar tensor theories characterized by a supersymmetric loop corrected potential and a Hubble parameter defined as a function of the scalar field.Power-law solutions are obtained in the FRW background giving rise to acceleratedly expanding universe characterized by a scale factor and a scalar field depending both on the non-minimal coupling parameterξ.Based on SNeIa data and on Hubble data X-ray gas mass fraction measurements,we find 0.116<ξ<0.225 which results on a universe dominated by vacuum energy.展开更多
Reactive distillation(RD) process is an innovative hybrid process combining reaction with distillation, which has recently come into sharp focus as a successful case of process intensification. Considered as the most ...Reactive distillation(RD) process is an innovative hybrid process combining reaction with distillation, which has recently come into sharp focus as a successful case of process intensification. Considered as the most representative case of process intensification, it has been applied for many productions, especially for production of ester compounds. However, such problems existing in the RD system for ester productions are still hard to solve,as the removal of the water which comes from the esterification, and the separation of the azeotropes of ester–alcohol(–water). Many methods have been studying on the process to solve the problems resulting in further intensification and energy saving. In this paper, azeotropic–reactive distillation or entrainer enhanced reactive distillation(ERD) process, reactive extractive distillation(RED) process, the method of co-production in RD process, pressure-swing reactive distillation(PSRD) process, reactive distillation–pervaporation coupled process(RD–PV), are introduced to solve the problems above, so the product(s) can be separated efficiently and the chemical equilibrium can be shifted. Dividing-wall column(DWC) structure and novel methods of loading catalyst are also introduced as the measures to intensify the process and save energy.展开更多
Thermoacoustic imaging with current injection(TAI-CI) is a novel imaging technology that couples with electromagnetic and acoustic research, which combines the advantages of high contrast of the electrical impedance t...Thermoacoustic imaging with current injection(TAI-CI) is a novel imaging technology that couples with electromagnetic and acoustic research, which combines the advantages of high contrast of the electrical impedance tomography and the high spatial resolution of sonography, and therefore has the potential for early diagnosis. To verify the feasibility of TAI-CI for complex bone-containing biological tissues, the principle of TAI-CI and the coupling characteristics of fluid and solid were analyzed. Meanwhile, thermoacoustic(TA) effects for fluid model and fluid–solid coupling model were analyzed by numerical simulations. Moreover, we conducted experiments on animal cartilage, hard bone and biological soft tissue phantom with low conductivity(0.5 S/m). By injecting a current into the phantom, the thermoacoustic signal was detected by the ultrasonic transducer with a center frequency of 1 MHz, thereby the B-scan image of the objects was obtained. The B-scan image of the cartilage experiment accurately reflects the distribution of cartilage and gel, and the hard bone has a certain attenuation effect on the acoustic signal. However, compared with the ultrasonic imaging, the thermoacoustic signal is only attenuated during the outward propagation. Even in this case, a clear image can still be obtained and the images can reflect the change of the conductivity of the gel. This study confirmed the feasibility of TAI-CI for the imaging of biological tissue under the presence of cartilage and the bone. The novel TAI-CI method provides further evidence that it can be used in the diagnosis of human diseases.展开更多
Inflammation and thrombosis usually occur together in many diseases,such as cardiovascular disease(CVD)and stroke,which remain to be the mostdetrimental human health killers.The crucial relevant cellular and molecular...Inflammation and thrombosis usually occur together in many diseases,such as cardiovascular disease(CVD)and stroke,which remain to be the mostdetrimental human health killers.The crucial relevant cellular and molecular events include platelet-leukocyte interaction,platelet P-selectin secretion of activated platelet and activation of leukocyte integrin Mac-1(also known asαMβ2 or CD11b/CD18),which has binding site of platelet receptor glycoprotein lbα(GPlboα). Circulating leukocytes tethered to,rolled on and firmly adhered at the activated platelets on vascular wall,through interaction of platelet P-selectin with leukocyte P-selectin glycoprotein ligand-1(PSGL-1)and Mac-1 with GPlbα.We assume that there is a rapid signaling pathway in PSGL-1 ligation-induced activation of Mac-1,for forming a stable gap junction intracellular communication between platelet and leukocyte.To test this assumption,we observed the tethering events and calcium bursting of neutrophils on immobilized P-selectin only or plus GPlbαwith use of the parallel plate flow chamber(PPFC)technique and intracellular calcium ion detector Fluo-4 AM at various wall shear stresses,and examined the dynamic force spectrum for interaction of Mac-1 plus Mn2+and GPlbαby single-molecule atomic force microscopy(AFM).In the PPFC experiments,the intracellular calcium flux of firmly adhered neutrophils on immobilized P-selectin only or plus GPlbαwas observed in real timeby fluorescence microscopy,and the tether events of neutrophils was recorded by an inverted microscope and a high speed CMOS acquisition system in 1280 pixels×1024 pixels at 100 frames per second(fps). Captured images were analyzed by Image Pro Plus.Our results indicated that force triggered,enhanced and quickened the cytoplasmic calcium bursting of neutrophils.Calcium bursting may be induced first by interaction of the activated neutrophil Integrin Mac-1 and GPlbα,but not by P-selectin ligation to its ligand PSGL-1.Being triggered and speeded up by wall shear stress,the P-selectin-induced a展开更多
On-surface synthesis of semiconducting graphdiyne nanowires usually su er severe side re- actions owing to the high reactivity of the butadiynylene units at noble metal surfaces, limiting the production of isolated na...On-surface synthesis of semiconducting graphdiyne nanowires usually su er severe side re- actions owing to the high reactivity of the butadiynylene units at noble metal surfaces, limiting the production of isolated nanowires. In this work, we report the high-yield synthesis of branchless graphdiyne nanowires [-C≡C-Ph2-C≡C-]n via on-surface Ullmann coupling of 1,4-bis(4-bromophenyl)-1,3-butadiyne molecules with chemical vapor deposition method. Non-contact atomic force microscopy with single-bond resolution reveals that single gold adatoms act as e ective protecting groups for butadiynylene units by forming Au-π ligand bonds, preventing unwanted branched coupling reactions and enabling the synthesis of ultralong isolated graphdiyne nanowires. This study will stimulate further investigation on the role of various surface adatoms in protecting on-surface reactions.展开更多
A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide int...A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide into valleys or rivers, changing river sediment supply condition and channel morphology. To investigate the mechanisms of granular flow and deposition, the dynamics of slope failure and sediment transportation in typical mountainous rivers of different intersection angles were analyzed with a coupling model of Computational Fluid Dynamics and Discrete Element Method(CFD-DEM). The numerical results show that the change of intersection angle between the granular flow flume and the river channel can affect the deposit geometry and the fluid flow field significantly. As the intersection angle increases, the granular velocity perpendicular to the river channel increases, while the granular velocity parallel to the river channel decreases gradually. Compared to the test of dry granular flow, the CFD-DEM coupling tests show much higher granular velocity and larger volume of sediments entrained in the river. Due to the river flow, particles located at the edge of the deposition will move downstream gradually and the main section of sediments deposition moves from the center to the edge of the river channel. As a result, sediment supply in the downstream river will distribute unevenly. Under the erosion of fluid flow, the proportion of fine particles increases, while the proportion of coarse particles decreases gradually in the sediment deposition. The build-up of accumulated sediment mass will cause a significant increase in water level in the river channel, thus creating serious flooding hazard in mountainous rivers.展开更多
Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fund...Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11672122).
文摘Nonlinear oscillators and circuits can be coupled to reach synchronization and consensus. The occurrence of complete synchronization means that all oscillators can maintain the same amplitude and phase, and it is often detected between identical oscillators. However, phase synchronization means that the coupled oscillators just keep pace in oscillation even though the amplitude of each node could be different. For dimensionless dynamical systems and oscillators, the synchronization approach depends a great deal on the selection of coupling variable and type. For nonlinear circuits, a resistor is often used to bridge the connection between two or more circuits, so voltage coupling can be activated to generate feedback on the coupled circuits. In this paper, capacitor coupling is applied between two Pikovsk-Rabinovich(PR) circuits, and electric field coupling explains the potential mechanism for differential coupling. Then symmetric coupling and cross coupling are activated to detect synchronization stability, separately. It is found that resistor-based voltage coupling via a single variable can stabilize the synchronization, and the energy flow of the controller is decreased when synchronization is realized. Furthermore, by applying appropriate intensity for the coupling capacitor, synchronization is also reached and the energy flow across the coupling capacitor is helpful in regulating the dynamical behaviors of coupled circuits, which are supported by a continuous energy exchange between capacitors and the inductor. It is also confirmed that the realization of synchronization is dependent on the selection of a coupling channel. The approach and stability of complete synchronization depend on symmetric coupling, which is activated between the same variables. Cross coupling between different variables just triggers phase synchronization. The capacitor coupling can avoid energy consumption for the case with resistor coupling, and it can also enhance the energy exchange between two coupled circuits.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0304300 and 2016YFA0300600)the National Natural Science Foundation of China(Grant Nos.11725419 and 11434008)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000).
文摘Realization of a flexible and tunable coupling scheme among qubits is critical for scalable quantum information processing.Here,we design and characterize a tunable coupling element based on Josephson junction,which can be adapted to an all-to-all connected circuit architecture where multiple Xmon qubits couple to a common coplanar waveguide resonator.The coupling strength is experimentally verified to be adjustable from 0 MHz to about 40 MHz,and the qubit lifetime can still be up to 12μs in the presence of the coupling element.
基金Supported by China Coal Science and Technology Group Technology Innovation Fund Major Project (Grand No. 2018ZD002)China Coal Science and Technology Group Technology Innovation Fund Youth Project (Grand No. 2018-2-QN010).
文摘At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design.
文摘We discuss a particular four-dimensional cosmology based on non-minimal scalar tensor theories characterized by a supersymmetric loop corrected potential and a Hubble parameter defined as a function of the scalar field.Power-law solutions are obtained in the FRW background giving rise to acceleratedly expanding universe characterized by a scale factor and a scalar field depending both on the non-minimal coupling parameterξ.Based on SNeIa data and on Hubble data X-ray gas mass fraction measurements,we find 0.116<ξ<0.225 which results on a universe dominated by vacuum energy.
基金Supported by the National Key Research and Development Program of China(2017YFB0602500)the Basic Research Program of Hebei Province(16964502D).
文摘Reactive distillation(RD) process is an innovative hybrid process combining reaction with distillation, which has recently come into sharp focus as a successful case of process intensification. Considered as the most representative case of process intensification, it has been applied for many productions, especially for production of ester compounds. However, such problems existing in the RD system for ester productions are still hard to solve,as the removal of the water which comes from the esterification, and the separation of the azeotropes of ester–alcohol(–water). Many methods have been studying on the process to solve the problems resulting in further intensification and energy saving. In this paper, azeotropic–reactive distillation or entrainer enhanced reactive distillation(ERD) process, reactive extractive distillation(RED) process, the method of co-production in RD process, pressure-swing reactive distillation(PSRD) process, reactive distillation–pervaporation coupled process(RD–PV), are introduced to solve the problems above, so the product(s) can be separated efficiently and the chemical equilibrium can be shifted. Dividing-wall column(DWC) structure and novel methods of loading catalyst are also introduced as the measures to intensify the process and save energy.
基金the National Natural Science Foundation of China (Grant No. 51477161)the National Key Research and Development Program of China (Grant No. 2018YFC0115200)the Fund from the Chinese Academy of Sciences (Grant No. YZ2O15O7).
文摘Thermoacoustic imaging with current injection(TAI-CI) is a novel imaging technology that couples with electromagnetic and acoustic research, which combines the advantages of high contrast of the electrical impedance tomography and the high spatial resolution of sonography, and therefore has the potential for early diagnosis. To verify the feasibility of TAI-CI for complex bone-containing biological tissues, the principle of TAI-CI and the coupling characteristics of fluid and solid were analyzed. Meanwhile, thermoacoustic(TA) effects for fluid model and fluid–solid coupling model were analyzed by numerical simulations. Moreover, we conducted experiments on animal cartilage, hard bone and biological soft tissue phantom with low conductivity(0.5 S/m). By injecting a current into the phantom, the thermoacoustic signal was detected by the ultrasonic transducer with a center frequency of 1 MHz, thereby the B-scan image of the objects was obtained. The B-scan image of the cartilage experiment accurately reflects the distribution of cartilage and gel, and the hard bone has a certain attenuation effect on the acoustic signal. However, compared with the ultrasonic imaging, the thermoacoustic signal is only attenuated during the outward propagation. Even in this case, a clear image can still be obtained and the images can reflect the change of the conductivity of the gel. This study confirmed the feasibility of TAI-CI for the imaging of biological tissue under the presence of cartilage and the bone. The novel TAI-CI method provides further evidence that it can be used in the diagnosis of human diseases.
基金supported by the National Natural Science Foundation of China(116272109,11432006).
文摘Inflammation and thrombosis usually occur together in many diseases,such as cardiovascular disease(CVD)and stroke,which remain to be the mostdetrimental human health killers.The crucial relevant cellular and molecular events include platelet-leukocyte interaction,platelet P-selectin secretion of activated platelet and activation of leukocyte integrin Mac-1(also known asαMβ2 or CD11b/CD18),which has binding site of platelet receptor glycoprotein lbα(GPlboα). Circulating leukocytes tethered to,rolled on and firmly adhered at the activated platelets on vascular wall,through interaction of platelet P-selectin with leukocyte P-selectin glycoprotein ligand-1(PSGL-1)and Mac-1 with GPlbα.We assume that there is a rapid signaling pathway in PSGL-1 ligation-induced activation of Mac-1,for forming a stable gap junction intracellular communication between platelet and leukocyte.To test this assumption,we observed the tethering events and calcium bursting of neutrophils on immobilized P-selectin only or plus GPlbαwith use of the parallel plate flow chamber(PPFC)technique and intracellular calcium ion detector Fluo-4 AM at various wall shear stresses,and examined the dynamic force spectrum for interaction of Mac-1 plus Mn2+and GPlbαby single-molecule atomic force microscopy(AFM).In the PPFC experiments,the intracellular calcium flux of firmly adhered neutrophils on immobilized P-selectin only or plus GPlbαwas observed in real timeby fluorescence microscopy,and the tether events of neutrophils was recorded by an inverted microscope and a high speed CMOS acquisition system in 1280 pixels×1024 pixels at 100 frames per second(fps). Captured images were analyzed by Image Pro Plus.Our results indicated that force triggered,enhanced and quickened the cytoplasmic calcium bursting of neutrophils.Calcium bursting may be induced first by interaction of the activated neutrophil Integrin Mac-1 and GPlbα,but not by P-selectin ligation to its ligand PSGL-1.Being triggered and speeded up by wall shear stress,the P-selectin-induced a
文摘On-surface synthesis of semiconducting graphdiyne nanowires usually su er severe side re- actions owing to the high reactivity of the butadiynylene units at noble metal surfaces, limiting the production of isolated nanowires. In this work, we report the high-yield synthesis of branchless graphdiyne nanowires [-C≡C-Ph2-C≡C-]n via on-surface Ullmann coupling of 1,4-bis(4-bromophenyl)-1,3-butadiyne molecules with chemical vapor deposition method. Non-contact atomic force microscopy with single-bond resolution reveals that single gold adatoms act as e ective protecting groups for butadiynylene units by forming Au-π ligand bonds, preventing unwanted branched coupling reactions and enabling the synthesis of ultralong isolated graphdiyne nanowires. This study will stimulate further investigation on the role of various surface adatoms in protecting on-surface reactions.
基金supported by the National Natural Science Foundation of China(51579163 and 51639007)the National Key R&D Program of China(2017YFC1502504 and 2016YFC0402304).
文摘A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide into valleys or rivers, changing river sediment supply condition and channel morphology. To investigate the mechanisms of granular flow and deposition, the dynamics of slope failure and sediment transportation in typical mountainous rivers of different intersection angles were analyzed with a coupling model of Computational Fluid Dynamics and Discrete Element Method(CFD-DEM). The numerical results show that the change of intersection angle between the granular flow flume and the river channel can affect the deposit geometry and the fluid flow field significantly. As the intersection angle increases, the granular velocity perpendicular to the river channel increases, while the granular velocity parallel to the river channel decreases gradually. Compared to the test of dry granular flow, the CFD-DEM coupling tests show much higher granular velocity and larger volume of sediments entrained in the river. Due to the river flow, particles located at the edge of the deposition will move downstream gradually and the main section of sediments deposition moves from the center to the edge of the river channel. As a result, sediment supply in the downstream river will distribute unevenly. Under the erosion of fluid flow, the proportion of fine particles increases, while the proportion of coarse particles decreases gradually in the sediment deposition. The build-up of accumulated sediment mass will cause a significant increase in water level in the river channel, thus creating serious flooding hazard in mountainous rivers.
基金the National Key Research and Development Program of China (Grant No. 2017YFA0205700)National Basic Research Program of China (Grant No. 2015CB932403, 2017YFA0206000)+3 种基金National Natural Science Foundation of China (Grant Nos. 11674012, 61521004, 21790364, 61422501, and 11374023)Beijing Natural Science Foundation (Z180011, and L140007)Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No. 201420)National Program for Support of Top-notch Young Professionals (Grant No. W02070003).
文摘Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.