期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进二进制人工蜂群的BP神经网络并行集成学习算法及其应用研究
1
作者 贾凯 倪志伟 +2 位作者 李敬明 陆玉佳 朱旭辉 《系统科学与数学》 CSCD 北大核心 2019年第3期477-494,共18页
BP神经网络算法具有寻优效率不高、易发生早熟且最终求解精度不够等特点,针对以上问题,文章提出一种基于改进二进制人工蜂群算法(Improved Binary Artificial Bee Colony Algorithm)的BP神经网络并行集成学习算法(IBABC-BP).首先,文章... BP神经网络算法具有寻优效率不高、易发生早熟且最终求解精度不够等特点,针对以上问题,文章提出一种基于改进二进制人工蜂群算法(Improved Binary Artificial Bee Colony Algorithm)的BP神经网络并行集成学习算法(IBABC-BP).首先,文章构建以高斯变异函数作为概率映射函数的离散二进制人工蜂群算法(IBABC),分析证明了算法的有效性,并通过在4个Benchmark标准测试函数上证明了其寻优精度和收敛速度较其他4种改进人工蜂群算法均有大幅提高;其次,将改进的二进制人工蜂群算法(IBABC)用于训练BP神经网络.设计了IBABC-BP并行集成学习算法;最后,将IBABC-BP算法用于雾霾评估预测,以合肥地区的雾霾历史数据作为仿真数据.实验结果表明,IBABC-BP算法在寻优精度和收敛速度上较原始BP算法、人工蜂群ABC-BP算法、遗传GA-BP算法等算法有明显的提升,可以有效地提高雾霾评估预测的准确性. 展开更多
关键词 改进二进制人工蜂群算法 BP神经网络 高斯变异函数 雾霾评估预测
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈