期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
联合EEMD-KECA算法的InSAR干涉相位时频滤波
1
作者 余洁 刘利敏 +3 位作者 李小娟 朱琳 谢东海 陈蜜 《遥感学报》 EI CSCD 北大核心 2019年第1期78-88,共11页
根据干涉图信号和噪声时频分布差异的特点,提出一种改进的基于经验模态分解EEMD的InSAR干涉相位滤波方法。该方法首先利用可有效降低模态混叠的EEMD算法,对干涉图的实部及虚部分别进行2维经验模态分解,获得具有不同时间尺度的模态分量;... 根据干涉图信号和噪声时频分布差异的特点,提出一种改进的基于经验模态分解EEMD的InSAR干涉相位滤波方法。该方法首先利用可有效降低模态混叠的EEMD算法,对干涉图的实部及虚部分别进行2维经验模态分解,获得具有不同时间尺度的模态分量;然后根据信号和噪声分量的时间尺度分布特性的差异,采用适用于非线性信号分析的KECA算法对噪声识别、分离;最后利用去除噪声后的模态分量重构干涉图。为了证明本文方法的有效性,分别利用模拟数据及真实InSAR差分干涉相位进行滤波试验。对比本文EEMD-KECA滤波方法、Goldstein滤波、圆周期-中值滤波、EMD分解、EMD-PCA方法的滤波效果,采用相干斑指数、均方差指数、边缘保持指数进行定量评价。结果表明,与经典InSAR干涉图滤波方法相比,本文联合EEMD-KECA算法的滤波方法能有效滤除干涉图噪声,且在条纹边缘等细节信息的保持上也具有较大优势。 展开更多
关键词 EEMD 模态混叠 KECA 噪声分离 INSAR干涉图 滤波
基于KECA和FWA-SVM的间歇过程分时段故障诊断方法 预览
2
作者 蔡振宇 张敏 包珊珊 《计算机应用研究》 CSCD 北大核心 2019年第5期1409-1414,共6页
针对间歇过程的高度复杂性、强非线性、强时段性等特点,提出一种基于核熵成分分析(KECA)特征变量降维,利用烟花算法(FWA)优化支持向量机(SVM)参数的间歇过程分时段故障诊断方法。首先,通过多向核主元分析(MKPCA)进行在线故障监测,输出... 针对间歇过程的高度复杂性、强非线性、强时段性等特点,提出一种基于核熵成分分析(KECA)特征变量降维,利用烟花算法(FWA)优化支持向量机(SVM)参数的间歇过程分时段故障诊断方法。首先,通过多向核主元分析(MKPCA)进行在线故障监测,输出故障数据;其次,利用K-means分类方法将间歇过程划分为若干个子时段,对故障数据进行KECA特征变量处理,按熵值贡献率来确定选取主元的个数,深层提取特征信息;最后,在各子时段内分别构建FWA优化SVM参数故障诊断模型,将降维处理后的故障数据代入各自所属子时段FWA-SVM诊断模型内进行故障诊断。通过对青霉素仿真实验数据进行各种对比实验研究,验证了该方法的可行性与有效性。 展开更多
关键词 间歇过程 核熵成分分析 烟花算法 支持向量机 K-MEANS 青霉素仿真
在线阅读 下载PDF
LTSA和KECA相结合的轴承故障诊断 预览
3
作者 高胜利 党伟明 +1 位作者 齐咏生 赵小荣 《机械设计与制造》 北大核心 2018年第10期27-31,共5页
针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号... 针对轴承的工况复杂,其振动信号呈现非线性、非平稳特性。传统算法不能充分挖掘出非线性、非平稳信号内部本质信息,提出了基于局部切空间排列算法(LTSA)与核熵成份分析(KECA)相结合的故障诊断方法。该方法首先将滚动轴承振动信号一维时间序列重构到高维相空间,并估计数据的本征维数;然后利用局部切空间排列算法对数据集进行维数约简,得到初始的低维流形结构特征向量空间的第一行特征,对其进行快速傅里叶变换(FFT),从其频谱中分别提取滚动轴承内环、外环的故障特征频率及它们分别对应的倍频和频谱能量等7个变量作为故障特征向量;最后采用KECA对滚动轴承的故障特征向量进行模式识别,KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,从而实现故障的识别与诊断。采用Case Western Reserve大学提供的轴承实验数据对算法进行了验证,结果表明该方法可有效提取滚动轴承的故障特征,可以对滚动轴承的故障类型精确分类,实现对滚动轴承准确的故障诊断。 展开更多
关键词 滚动轴承 轴承故障诊断 局部切空间排列算法 KECA
在线阅读 下载PDF
基于时频特征核熵成分分析的局部放电模式识别方法
4
作者 李思同 庄强 +3 位作者 金琳 卢兴旺 匡荣 赵静 《高压电器》 CSCD 北大核心 2018年第6期125-131,共7页
为实现电气设备局部放电模式的准确识别,提出了一种基于时频特征核熵成分分析的局部放电模式识别方法。首先采用S变换理论对局部放电脉冲信号进行时频特征分析,针对S变换分析结果维数庞大但冗余信息较多而不便于模式识别的缺点,基于核... 为实现电气设备局部放电模式的准确识别,提出了一种基于时频特征核熵成分分析的局部放电模式识别方法。首先采用S变换理论对局部放电脉冲信号进行时频特征分析,针对S变换分析结果维数庞大但冗余信息较多而不便于模式识别的缺点,基于核熵成分分析方法对S变换结果进行压缩降维处理,得到了局部放电模式识别时频特征向量,同时结合随机森林分类器实现了局部放电类型的准确识别。搭建了尖端放电、沿面放电、气泡放电、悬浮放电等典型变压器绝缘缺陷模型并采集了局部放电信号,分别采用文中方法、PCA方法及KPCA方法进行了局放模式识别实验。实验结果表明,相比PCA方法及KPCA方法,文中方法局放模式识别结果准确率较高且耗时较短。 展开更多
关键词 局部放电 时频特征 S变换 核熵成分分析 模式识别
基于MSPCA-KECA的冷水机组故障监测及诊断 预览 被引量:2
5
作者 齐咏生 张海利 +2 位作者 王林 高学金 陆晨曦 《化工学报》 CSCD 北大核心 2017年第4期1499-1508,共10页
针对冷水机组同类型不同等级故障的变量变化存在差异会造成误诊断的问题,提出一种基于多尺度主元分析-核熵成分分析(MSPCA-KECA)的故障诊断策略。MSPCA提取故障特征,其输出作为KECA分类器的输入,实现故障的实时监测与自动诊断。首先,... 针对冷水机组同类型不同等级故障的变量变化存在差异会造成误诊断的问题,提出一种基于多尺度主元分析-核熵成分分析(MSPCA-KECA)的故障诊断策略。MSPCA提取故障特征,其输出作为KECA分类器的输入,实现故障的实时监测与自动诊断。首先,改进的MSPCA算法通过将小波多尺度分析与主元分析相结合,筛选故障信息可能存在的尺度直接重构并采用PCA提取故障特征,获取不同类型故障之间差异的同时也保留了同类型但不同等级故障之间的相似性,提高故障诊断的可靠性。之后建立KECA非线性分类器并引入一种新的监测统计量——散度测度统计量,使降维后不同特征信息之间呈现显著的角度差异,易于分类。最后,采用支持向量数据描述(SVDD)算法确定新统计量的控制限,以克服无法获知统计量分布的问题。通过对冷水机组数据的仿真研究,验证了MSPCA-KECA方法的可行性及有效性。 展开更多
关键词 故障诊断 多尺度主元分析 核熵成分分析 冷水机组
在线阅读 下载PDF
基于EEMD-KECA的风电机组滚动轴承故障诊断 被引量:4
6
作者 齐咏生 张二宁 +2 位作者 高胜利 王林 高学金 《太阳能学报》 CSCD 北大核心 2017年第7期1943-1951,共9页
针对传统频域诊断算法不能充分挖掘出非线性、非平稳信号内部本质信息的问题,提出基于聚合经验模态分解(EEMD)的复合特征提取和基于核熵成分分析(KECA)的故障自动诊断算法。该方法首先采用EEMD将原始信号分解成若干特征模态函数(... 针对传统频域诊断算法不能充分挖掘出非线性、非平稳信号内部本质信息的问题,提出基于聚合经验模态分解(EEMD)的复合特征提取和基于核熵成分分析(KECA)的故障自动诊断算法。该方法首先采用EEMD将原始信号分解成若干特征模态函数(IMF),计算IMF能量和信号的能量熵构建复合特征向量并作为KECA的输入,之后建立KECA非线性分类器并引入一种新的监测统计量——散度测度统计量,实现故障的实时监测与自动诊断。采用KECA可实现根据熵值大小进行特征分类,具有较强的非线性处理能力,且不同特征信息之间呈现出显著的角度差异,易于分类。最后通过实际风电机组滚动轴承应用实例对算法进行验证,结果表明该方法可有效提取信号中的故障特征,实现对滚动轴承的故障诊断,相比神经网络分类方法具有更高的识别率。 展开更多
关键词 故障诊断 聚合经验模态分解 核熵成分分析 能量熵 滚动轴承
基于KECA的化工过程故障监测新方法 预览 被引量:6
7
作者 齐咏生 张海利 +1 位作者 高学金 王普 《化工学报》 EI CAS CSCD 北大核心 2016年第3期1063-1069,共7页
针对化工过程数据复杂、非线性的特点,提出一种基于核熵成分分析(KECA)的化工过程故障监测算法。首先,KECA算法按照Renyi熵值的大小选取特征值及特征向量,相比传统的KPCA监测算法,其保留主元个数更少,可以有效减少运算量。同时,仿真... 针对化工过程数据复杂、非线性的特点,提出一种基于核熵成分分析(KECA)的化工过程故障监测算法。首先,KECA算法按照Renyi熵值的大小选取特征值及特征向量,相比传统的KPCA监测算法,其保留主元个数更少,可以有效减少运算量。同时,仿真研究表明KECA算法选取的主元具有角度结构特性,据此,提出一种新的统计量——CS(Cauchy-Schwarz)统计量,其对应到核特征空间中即为向量间的角度余弦值,可以较好表述不同概率密度分布之间的相似度。最后,将KECA和KPCA算法分别应用于TE(Tennessee Eastman)过程,结果表明KECA在故障检测延迟与检出率相比KPCA都有很大的优势。 展开更多
关键词 安全 过程控制 主元分析 故障监测 KECA CS统计量
在线阅读 下载PDF
基于KMC—KECA的间歇发酵过程的故障诊断 预览 被引量:1
8
作者 解亚萍 赵鹏 党伟明 《石油化工自动化》 CAS 2016年第6期21-26,共6页
针对间歇发酵过程的不稳定性、强非线性、批次不等长等特点以及传统贡献图难以找到由特征空间到原始空间的逆映射函数的问题,提出了一种基于K均值聚类贡献图的核熵成分分析的间歇发酵过程故障诊断方法。首先,KECA算法按照Renyi熵值的... 针对间歇发酵过程的不稳定性、强非线性、批次不等长等特点以及传统贡献图难以找到由特征空间到原始空间的逆映射函数的问题,提出了一种基于K均值聚类贡献图的核熵成分分析的间歇发酵过程故障诊断方法。首先,KECA算法按照Renyi熵值的大小选取特征值及特征向量,然后用K均值聚类中心作为当前时刻的标准样本,拿故障样本的每个变量依次去替换标准样本的对应变量,通过计算其统计量,找出故障源,从而进行故障诊断。最后将该方法用到青霉素发酵过程验证所提出方法的有效性。 展开更多
关键词 核熵成分分析 K均值 聚类贡献图 故障诊断 间歇过程
在线阅读 下载PDF
基于核熵成分分析的模拟电路早期故障诊断方法 预览 被引量:11
9
作者 张朝龙 何怡刚 +2 位作者 袁莉芬 王金平 佐磊 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第3期675-684,共10页
针对模拟电路早期故障诊断中存在部分早期故障类别重叠的难点,提出了一种基于核熵成分分析的故障诊断方法。首先应用小波分形分析计算被测电路时域响应信号的小波分形维特征,然后利用核熵成分分析方法进行特征的优选与降维,最后将优选... 针对模拟电路早期故障诊断中存在部分早期故障类别重叠的难点,提出了一种基于核熵成分分析的故障诊断方法。首先应用小波分形分析计算被测电路时域响应信号的小波分形维特征,然后利用核熵成分分析方法进行特征的优选与降维,最后将优选和降维后的特征应用最小二乘支持向量机多类分类器进行区分,其中用于识别重叠故障类别的最小二乘支持向量机的参数由量子粒子群算法优化选择。仿真结果表明,本文提出的核熵成分分析方法能较好地获取故障响应信号的本质特征,并表现出了比其他特征提取方法更好的性能,有助于提高模拟电路早期故障的诊断正确率。 展开更多
关键词 模拟电路 早期故障诊断 小波分形分析 核熵成分分析 最小二乘支持向量机 量子粒子群算法
在线阅读 下载PDF
基于KECA的化工过程安全检测模块实现 预览
10
作者 冯剑英 李秀喜 康德礼 《软件》 2014年第2期13-16,共4页
化工过程生产过程复杂多变,DCS所采集到的数据也是非常复杂,变量之间相互关联,并且数据呈现非线性特点,这些特点导致化工过程的过程安全监控变得复杂。本文针对这些特点,实现了一种基于KECA算法的化工过程监控的加算计软件模块。使用实... 化工过程生产过程复杂多变,DCS所采集到的数据也是非常复杂,变量之间相互关联,并且数据呈现非线性特点,这些特点导致化工过程的过程安全监控变得复杂。本文针对这些特点,实现了一种基于KECA算法的化工过程监控的加算计软件模块。使用实际化工生产过程测试结果显示,该模块等快速并且准确的检测出过程的异常情况,故障的检出率在98%以上。 展开更多
关键词 KECA 安全检测 模块实现 环己酮
在线阅读 下载PDF
核协方差成分分析方法及其在聚类中的应用 预览 被引量:1
11
作者 闫晓波 王士同 郭慧玲 《计算机科学》 CSCD 北大核心 2012年第9期229-234,共6页
以降维前后密度总和与Renyi熵的差(Densities-vs-Entropy,D-vs-E)尽量靠近为准则,得到了一种新的特征降维方法,而D-vs-E是由核特征空间的协方差矩阵导出的,因此称为核协方差成分分析(Kernel Covariance Compo-nent Analysis,KCCA)。... 以降维前后密度总和与Renyi熵的差(Densities-vs-Entropy,D-vs-E)尽量靠近为准则,得到了一种新的特征降维方法,而D-vs-E是由核特征空间的协方差矩阵导出的,因此称为核协方差成分分析(Kernel Covariance Compo-nent Analysis,KCCA)。将D-vs-E发展为广义D-vs-E(generalized D-vs-E)。KCCA通过将数据投影在使D-vs-E最大的KPCA轴方向得到转换后的低维数据,但是所选取的KPCA轴不一定对应于核矩阵最大的几个特征值。与基于Renyi熵的KECA相比,KCCA是基于D-vs-E的。基于广义D-vs-E的KCCA数据转换方法应用于聚类的结果显示,它在对高斯核参数的选择上具有更强的鲁棒性。 展开更多
关键词 核熵成分分析 核协方差成分分析 聚类 协方差矩阵 高斯核参数 雷尼熵
在线阅读 免费下载
基于核熵成分分析的光谱重建算法研究 预览
12
作者 杜德伟 张晓晓 +3 位作者 张洋 孙山 韩浩然 杨卫平 《光学仪器》 2018年第6期75-85,共11页
对基于核熵成分分析的光谱反射率重建方法进行了研究,分别采用主成分分析方法和核主成分分析方法构建光谱反射率重建算法进行颜色重建研究,并与基于核熵成分分析算法的光谱反射率进行比较。实验结果表明,基于核熵成分分析的光谱重建算... 对基于核熵成分分析的光谱反射率重建方法进行了研究,分别采用主成分分析方法和核主成分分析方法构建光谱反射率重建算法进行颜色重建研究,并与基于核熵成分分析算法的光谱反射率进行比较。实验结果表明,基于核熵成分分析的光谱重建算法在色度精度和光谱精度上均优于主成分分析和核主成分分析,对物体表面颜色的真实重建具有一定的应用价值。 展开更多
关键词 多光谱成像 光谱反射率重建 主成分分析(PCA) 核主成分分析(KPCA) 核熵成分分析(KECA)
在线阅读 下载PDF
Comparison of Kernel Entropy Component Analysis with Several Dimensionality Reduction Methods 预览
13
作者 马西沛 张蕾 孙以泽 《东华大学学报:英文版》 EI CAS 2017年第4期577-582,共6页
Dimensionality reduction techniques play an important role in data mining. Kernel entropy component analysis( KECA) is a newly developed method for data transformation and dimensionality reduction. This paper conducte... Dimensionality reduction techniques play an important role in data mining. Kernel entropy component analysis( KECA) is a newly developed method for data transformation and dimensionality reduction. This paper conducted a comparative study of KECA with other five dimensionality reduction methods,principal component analysis( PCA),kernel PCA( KPCA),locally linear embedding( LLE),laplacian eigenmaps( LAE) and diffusion maps( DM). Three quality assessment criteria, local continuity meta-criterion( LCMC),trustworthiness and continuity measure(T&C),and mean relative rank error( MRRE) are applied as direct performance indexes to assess those dimensionality reduction methods. Moreover,the clustering accuracy is used as an indirect performance index to evaluate the quality of the representative data gotten by those methods. The comparisons are performed on six datasets and the results are analyzed by Friedman test with the corresponding post-hoc tests. The results indicate that KECA shows an excellent performance in both quality assessment criteria and clustering accuracy assessing. 展开更多
在线阅读 下载PDF
基于核熵成分分析的流式数据自动分群方法 预览 被引量:7
14
作者 董明利 马闪闪 +1 位作者 张帆 潘志康 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第1期206-211,共6页
针对多参数流式细胞数据传统人工分群过程复杂、自动化程度不高等问题,提出了一种基于核熵成分分析(KECA)的自动分群方法。选取对瑞利(Renyi)熵具有最大贡献的特征向量作为投影方向,对数据进行特征提取;设计了一种基于余弦相似度和K... 针对多参数流式细胞数据传统人工分群过程复杂、自动化程度不高等问题,提出了一种基于核熵成分分析(KECA)的自动分群方法。选取对瑞利(Renyi)熵具有最大贡献的特征向量作为投影方向,对数据进行特征提取;设计了一种基于余弦相似度和K-means算法的分类器,并采用一种基于向量夹角的最佳聚类数确定方法,最终获得细胞的分类标签。对实验获得的淋巴细胞免疫表型分析数据进行处理,结果表明,该方法能够实现细胞的快速、自动分群,整体分群准确率能够达到97%以上,操作简单便捷,提高了细胞分析的效率。 展开更多
关键词 流式细胞术 自动分群 核熵成分分析 K-MEANS算法 余弦相似度
在线阅读 下载PDF
基于核熵成分分析的数据降维 预览 被引量:4
15
作者 黄丽瑾 施俊 钟瑾 《计算机工程》 CAS CSCD 2012年第2期 175-177,共3页
针对高维数据的维灾问题,采用核熵成分分析方法降维数据,并与主成分分析及核主成分分析方法进行对比。降维后的数据利用支持向量机算法进行分类,以验证算法有效性。实验结果表明,KECA在较低的维数时仍然能获得较好的分类精度,可以减少... 针对高维数据的维灾问题,采用核熵成分分析方法降维数据,并与主成分分析及核主成分分析方法进行对比。降维后的数据利用支持向量机算法进行分类,以验证算法有效性。实验结果表明,KECA在较低的维数时仍然能获得较好的分类精度,可以减少后续的处理复杂度和运行时间,适用于机器学习、模式识别等领域。 展开更多
关键词 降维 核熵成分分析 核主成分分析 支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈