期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
绝对值激活深度神经网络的串联故障电弧检测 预览
1
作者 余琼芳 黄高路 杨艺 《计算机应用》 CSCD 北大核心 2019年第A01期54-59,共6页
串联故障电弧具有隐蔽性和随机性,发生时线路电流波形受负载类型的影响而具有复杂性,检测难度大,严重威胁用电系统安全。鉴于电流数据具有大量负值的特点,提出用绝对值函数作为激活函数改进AlexNet深度学习网络检测串联故障电弧,并分析... 串联故障电弧具有隐蔽性和随机性,发生时线路电流波形受负载类型的影响而具有复杂性,检测难度大,严重威胁用电系统安全。鉴于电流数据具有大量负值的特点,提出用绝对值函数作为激活函数改进AlexNet深度学习网络检测串联故障电弧,并分析了激活函数特性对串联故障电弧检测效果的影响。把实验采集的三类负载分别在正常和发生串联故障电弧状态下的共7200组电流数据制作成训练集和测试集,并分别对使用四种激活函数的AlexNet网络进行训练和测试。实验结果显示,ELU激活的网络最高检测正确率为95.5%;而绝对值激活的网络效果最好,其平均检测正确率最高为97.25%,最低为93%,比ReLU激活的AlexNet网络最高88.75%的平均准确率高出最少4.25个百分点;而使用Sigmoid函数的网络不收敛。分析结果表明线性的激活数据特征有助于提高网络的检测准确率。 展开更多
关键词 串联故障电弧 深度学习 卷积神经网络 激活函数 绝对值函数 指数线性单元 修正线性单元
在线阅读 下载PDF
基于RA-DNN的电力变压器故障分类方法 预览
2
作者 曹渝昆 何健伟 《电气自动化》 2019年第2期98-101,107共5页
由于电力变压器故障的现象和原因存在一定的模糊性和随机性,传统方法在复杂的情况下识别变压器故障的精度不高。提出了一种基于深层神经网络的变压器故障分类方法,利用无编码的油中溶解气体分析(dissolvedgasanalysis,DGA)数据,结合深... 由于电力变压器故障的现象和原因存在一定的模糊性和随机性,传统方法在复杂的情况下识别变压器故障的精度不高。提出了一种基于深层神经网络的变压器故障分类方法,利用无编码的油中溶解气体分析(dissolvedgasanalysis,DGA)数据,结合深度学习流行的修正线性单元(rectifiedlinearunits,ReLU)函数、Adam优化算法和批归一化(batchnormalization,BN)的数据处理方法,通过与传统激活函数Sigmoid函数和随机梯度下降算法(stochasticgradientdescent,SGD)做对比试验。结果表明,采用ReLU+Adam方案的神经网络,收敛速度更快,损失函数的收敛值也更低,提高了模型训练的速度和鲁棒性。通过与反向传播神经网络(backpropagationneuralnetwork,BPNN)、支持向量机(supportvectormachine,SVM)的试验比较,在变压器故障分类上取得了较好的效果,为电力变压器的故障诊断提供新的方法与思路。 展开更多
关键词 变压器 深度学习 神经网络 修正线性单元 批归一化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈