Electrochromic technology plays a significant role in energy conservation,while its performance is greatly limited by the transport behavior of ions and electrons.Hence,an electrochromic system with overall excellent ...Electrochromic technology plays a significant role in energy conservation,while its performance is greatly limited by the transport behavior of ions and electrons.Hence,an electrochromic system with overall excellent performances still need to be explored.Initially motivated by the high ionic and electronic conductivity of transition metal carbide or nitride(MXene),we design a feasible procedure to synthesize the MXene/WO3−x composite electrochromic film.The consequently boosted electrochromic performances prove that the addition of MXene is an effective strategy for simultaneously enhancing electrons and ions transport behavior in electrochromic layer.The MXene/WO3−x electrochromic device exhibits enhanced transmittance modulation and coloration efficiency(60.4%,69.1 cm^2 C^−1),higher diffusion coefficient of Li+and excellent cycling stability(200 cycles)over the pure WO3−x device.Meanwhile,numerical stimulation theoretically explores the mechanism and kinetics of the lithium ion diffusion,and proves the spatial and time distributions of higher Li+concentration in MXene/WO3−x composite electrochromic layer.Both experiments and theoretical data reveal that the addition of MXene is effective to promote the transport kinetics of ions and electrons simultaneously and thus realizing a high-performance electrochromic device.This work opens new avenues for electrochromic materials design and deepens the study of kinetics mechanism of ion diffusion in electrochromic devices.展开更多
In this work,tungsten oxide with different concentrations(0,0.4 at%,2.0 at%and 3.2 at%)was introduced to the ceria nanorods via a deposition-precipitation(DP)approach,and copper species of ca.10 at%were sequentially a...In this work,tungsten oxide with different concentrations(0,0.4 at%,2.0 at%and 3.2 at%)was introduced to the ceria nanorods via a deposition-precipitation(DP)approach,and copper species of ca.10 at%were sequentially anchored onto the modified ceria support by a similar DP route.The aim of the study was to investigate the effect of the amount of tungsten oxide(0,0.4 at%,2.0 at%,and 3.2 at%)modifier on the copper-ceria catalysts for CO oxidation reaction and shed light on the structure-activity relationship.By the aids of multiple characterization techniques including N2 adsorption,high-resolution transmission electron microscopy(HRTEM),powder X-ray diffraction(XRD),X-ray absorption fine structure(XAFS),and temperature-programmed reduction by hydrogen(H2-TPR)in combination with the catalytic performance for CO oxidation reaction,it is found that the copper-ceria samples maintain the crystal structure of the fluorite fcc CeO2 phase with the same nanorod-like morphology with the introduction of tungsten oxide,while the textural properties(the surface area,pore volume and pore size)of ceria support and copper-ceria catalysts are changed,and the oxidation states of copper and tungsten are kept the same as Cu2+and W6+before and after the reaction,but the introduction of tungsten oxide(WO3)significantly changes the metal-support interaction(transfer the CuOx clusters to Cu-[Ox]-Ce species),which delivers to impair the catalytic activity of copper-ceria catalysts for CO oxidation reaction.展开更多
Significant interest has been focused on graphene materials for their unique properties as Hydrogen storage materials. The development of their abilities by modifying their configuration with doped or decorated transi...Significant interest has been focused on graphene materials for their unique properties as Hydrogen storage materials. The development of their abilities by modifying their configuration with doped or decorated transition metals </span><span style="font-family:Verdana;">was also of great interest. In this work</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> using the DFT/B3LYP/6-31G/LanL2DZ</span><span style="font-family:Verdana;"> level of theory, graphene sheet (GS) as one of the materials of interest was doped with two transition metals, Osmium (Os) and Tungsten (W). Two active sites on the GS were tested (C4 and C16) resulted into adsorbed systems, H2@C4-GS and H2@C16-GS. C16 position showed the largest adsorption energy compared to that at C4. Therefore, C4 was replaced by the two metals and two adsorbed systems were formed</span><span style="font-family:Verdana;">: </span><span style="font-family:Verdana;">H</span><sub><span style="font-family:Verdana;vertical-align:sub;">2</span></sub><span style="font-family:Verdana;">@Os-GS and H2@W-GS. The binding energy of H</span><sub><span style="font-family:Verdana;vertical-align:sub;">2</span></sub><span style="font-family:Verdana;">@Os-GS was found to be greater than that of H2@W-GS.展开更多
Hydrogen has been recently attracted much attention with respect to high energy-conversion efficiency and low environmental burden. However, hydrogen gas is dangerous due to an explosive gas and a fast combustion rate...Hydrogen has been recently attracted much attention with respect to high energy-conversion efficiency and low environmental burden. However, hydrogen gas is dangerous due to an explosive gas and a fast combustion rate. Therefore, the development of hydrogen sensor with high accuracy and reliability that can detect hydrogen easily is required. Especially, a flexible hydrogen sensor is useful because it has a high degree of freedom with respect to the shape of location in which the sensor is to be located. A flexible hydrogen sensor—namely, a WO3 thin film formed on a PET film by the sol-gel method using photo irradiation—based on gasochromism of WO3 was developed. By irradiating a thin film, which was prepared by using WO3 precursor solution synthesized by the sol-gel method, with ultraviolet rays, a high-purity WO3 film could be prepared on PET at low temperature. The sensor was structured as a polystyrene (PS) film containing palladium (Pd) laminated on a WO3 film. The WO3 layer was porous, so the PS containing Pd atoms solution penetrated the WO3 layer. WO3 reacted with hydrogen gas and instantly turned blue as the transmittance of the WO3 layer changed. The sensor showed high reactivity even for hydrogen concentration below 4% (1%, 0.5%, 0.25%, and 0.1%), which was the lower limit of hydrogen ignition, and a linear relationship between hydrogen concentration and change in transmittance was found. Moreover, the resistance of the WO3 film significantly and instantaneously changed due to hydrogen-gas exposure, and the hydrogen concentration and resistance change showed a linear relationship. It is therefore possible to quantitatively detect low concentrations of hydrogen by using changes in transmittance and resistance as indices. Since these changes occur selectively under hydrogen at room temperature and normal pressure, they form the basis of a highly sensitive hydrogen sensor. Since the developed sensor is flexible, it has a high degree of freedom with respect to the shape of location in which the sensor 展开更多
Ultrafine or nano-sized of tungsten carbide(WC)is the key material to prepare ultrafine grained cemented carbides.In this paper,nano-sized WC powders were directly prepared by using industrial nano-needle violet tungs...Ultrafine or nano-sized of tungsten carbide(WC)is the key material to prepare ultrafine grained cemented carbides.In this paper,nano-sized WC powders were directly prepared by using industrial nano-needle violet tungsten oxide(WO2.72)as the raw material,a fluidized bed as the reactor,and CO as the carbonization gas.The relationship between particle sizes and reaction temperatures,residence times,atmospheres has been investigated systematically.In addition,the physical–chemical indexes(such as residual oxygen,total carbon and free carbon)of the products were measured.The results indicated that the particle size of WC increased with the increase of temperature from 800 to 950°C.As the residence time increased,the particle size decreased gradually,and then increased due to slight sintering.The introduction of hydrogen reduced the carbonization rate,and is not beneficial to obtaining nano-sized WC.Products that satisfy the standard were obtained when WO2.72 reacted with CO at 850°C,900°C and 950°C for 3.0 h,2.5 h and 2.0 h,respectively.The particle sizes of the three samples calculated from the specific surface area were 46.4 nm,53.2 nm and 52.1 nm,respectively.展开更多
调控催化剂表面的化学键来平衡表面水分子的吸附和分解对于碱性溶液中水分解至关重要.本研究提出一种通过原位界面工程来设计与合成表面具有丰富的Ni-W金属键的Ni2W4C-W3C Janus异质结构的简便策略.预先将金属离子均匀分散在纳米纤维中...调控催化剂表面的化学键来平衡表面水分子的吸附和分解对于碱性溶液中水分解至关重要.本研究提出一种通过原位界面工程来设计与合成表面具有丰富的Ni-W金属键的Ni2W4C-W3C Janus异质结构的简便策略.预先将金属离子均匀分散在纳米纤维中,在碳化过程中,以电纺纤维为反应器,金属盐首先被还原成Ni和W3C.在持续分解的过程中,Ni原子原位插入W3C晶体中形成新的Ni2W4C相,得到Ni2W4C-W3C Janus异质结构.这使得W3C中原本惰性的W原子成为Ni2W4C中的活性位点.Ni2W4C-W3C/碳纳米纤维可以直接作为电极材料,其在碱性电解液中析氢活性达到10 m A/cm^2的电流密度需要63 m V过电位,析氧活性达到30 m A/cm^2的电流密度需要270 m V的过电位.若同时用作阴极和阳极进行全解水性能研究,其电池电压分别需要1.55和1.87 V就达到10和100 m A/cm^2.密度泛函理论结果表明,Ni与W之间的强相互作用增强了W原子的局域电子态.Ni2W4C为H-OH键的裂解提供了活性位点,W3C促进了Hads中间体与H2分子的结合.原位电化学拉曼光谱的结果表明该材料对水分子和羟基具有很强的吸收能力,W原子是真正的反应活性位点.该方法为构建高效电解水催化材料提供了另一种思路.展开更多
We have sought to improve the electrocatalytic performance of tungsten nitride through synthetic control over chemical composition and morphology.In particular,we have generated a thermodynamically unstable but cataly...We have sought to improve the electrocatalytic performance of tungsten nitride through synthetic control over chemical composition and morphology.In particular,we have generated a thermodynamically unstable but catalytically promising nitrogen-rich phase of tungsten via a hydrothermal generation of a tungsten oxide intermediate and subsequent annealing in ammonia.The net product consisted of three-dimensional(3D)micron-scale flower-like motifs of W2N3;this architecture not only evinced high structural stability but also incorporated the favorable properties of constituent two-dimensional nanosheets.From a performance perspective,as-prepared 3D W2N3 demonstrated promising hydrogen evolution reaction(HER)activities,especially in an acidic environment with a measured overpotential value of−101 mV at a current density of 10 mA/cm^2.To further enhance the electrocatalytic activity,small amounts of precious metal nanoparticles(such as Pt and Au),consisting of variable sizes,were uniformly deposited onto the underlying 3D W2N3 motifs using a facile direct deposition method;these composites were applied towards the CO2 reduction reaction(CO2RR).A highlight of this series of experiments was that Au/W2N3 composites were found to be a much more active HER(as opposed to either a CO2RR or a methanol oxidation reaction(MOR))catalyst.展开更多
基金the National Science Foundation of China(Nos.61631166004 and 51902250)the Fundamental Research Funds for the Central Universities(xzy012019002)+2 种基金H.F.thanks the support from Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JQ-035)H.W.acknowledged the support of Shenzhen Science and Technology Program(No.KQTD20180411143514543)Shenzhen DRC project[2018]1433.
文摘Electrochromic technology plays a significant role in energy conservation,while its performance is greatly limited by the transport behavior of ions and electrons.Hence,an electrochromic system with overall excellent performances still need to be explored.Initially motivated by the high ionic and electronic conductivity of transition metal carbide or nitride(MXene),we design a feasible procedure to synthesize the MXene/WO3−x composite electrochromic film.The consequently boosted electrochromic performances prove that the addition of MXene is an effective strategy for simultaneously enhancing electrons and ions transport behavior in electrochromic layer.The MXene/WO3−x electrochromic device exhibits enhanced transmittance modulation and coloration efficiency(60.4%,69.1 cm^2 C^−1),higher diffusion coefficient of Li+and excellent cycling stability(200 cycles)over the pure WO3−x device.Meanwhile,numerical stimulation theoretically explores the mechanism and kinetics of the lithium ion diffusion,and proves the spatial and time distributions of higher Li+concentration in MXene/WO3−x composite electrochromic layer.Both experiments and theoretical data reveal that the addition of MXene is effective to promote the transport kinetics of ions and electrons simultaneously and thus realizing a high-performance electrochromic device.This work opens new avenues for electrochromic materials design and deepens the study of kinetics mechanism of ion diffusion in electrochromic devices.
基金Project supported by National Natural Science Foundation of China(21773288,51902093)National Key Basic Research Program of China(2017YFA0403402)。
文摘In this work,tungsten oxide with different concentrations(0,0.4 at%,2.0 at%and 3.2 at%)was introduced to the ceria nanorods via a deposition-precipitation(DP)approach,and copper species of ca.10 at%were sequentially anchored onto the modified ceria support by a similar DP route.The aim of the study was to investigate the effect of the amount of tungsten oxide(0,0.4 at%,2.0 at%,and 3.2 at%)modifier on the copper-ceria catalysts for CO oxidation reaction and shed light on the structure-activity relationship.By the aids of multiple characterization techniques including N2 adsorption,high-resolution transmission electron microscopy(HRTEM),powder X-ray diffraction(XRD),X-ray absorption fine structure(XAFS),and temperature-programmed reduction by hydrogen(H2-TPR)in combination with the catalytic performance for CO oxidation reaction,it is found that the copper-ceria samples maintain the crystal structure of the fluorite fcc CeO2 phase with the same nanorod-like morphology with the introduction of tungsten oxide,while the textural properties(the surface area,pore volume and pore size)of ceria support and copper-ceria catalysts are changed,and the oxidation states of copper and tungsten are kept the same as Cu2+and W6+before and after the reaction,but the introduction of tungsten oxide(WO3)significantly changes the metal-support interaction(transfer the CuOx clusters to Cu-[Ox]-Ce species),which delivers to impair the catalytic activity of copper-ceria catalysts for CO oxidation reaction.
文摘Significant interest has been focused on graphene materials for their unique properties as Hydrogen storage materials. The development of their abilities by modifying their configuration with doped or decorated transition metals </span><span style="font-family:Verdana;">was also of great interest. In this work</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> using the DFT/B3LYP/6-31G/LanL2DZ</span><span style="font-family:Verdana;"> level of theory, graphene sheet (GS) as one of the materials of interest was doped with two transition metals, Osmium (Os) and Tungsten (W). Two active sites on the GS were tested (C4 and C16) resulted into adsorbed systems, H2@C4-GS and H2@C16-GS. C16 position showed the largest adsorption energy compared to that at C4. Therefore, C4 was replaced by the two metals and two adsorbed systems were formed</span><span style="font-family:Verdana;">: </span><span style="font-family:Verdana;">H</span><sub><span style="font-family:Verdana;vertical-align:sub;">2</span></sub><span style="font-family:Verdana;">@Os-GS and H2@W-GS. The binding energy of H</span><sub><span style="font-family:Verdana;vertical-align:sub;">2</span></sub><span style="font-family:Verdana;">@Os-GS was found to be greater than that of H2@W-GS.
文摘Hydrogen has been recently attracted much attention with respect to high energy-conversion efficiency and low environmental burden. However, hydrogen gas is dangerous due to an explosive gas and a fast combustion rate. Therefore, the development of hydrogen sensor with high accuracy and reliability that can detect hydrogen easily is required. Especially, a flexible hydrogen sensor is useful because it has a high degree of freedom with respect to the shape of location in which the sensor is to be located. A flexible hydrogen sensor—namely, a WO3 thin film formed on a PET film by the sol-gel method using photo irradiation—based on gasochromism of WO3 was developed. By irradiating a thin film, which was prepared by using WO3 precursor solution synthesized by the sol-gel method, with ultraviolet rays, a high-purity WO3 film could be prepared on PET at low temperature. The sensor was structured as a polystyrene (PS) film containing palladium (Pd) laminated on a WO3 film. The WO3 layer was porous, so the PS containing Pd atoms solution penetrated the WO3 layer. WO3 reacted with hydrogen gas and instantly turned blue as the transmittance of the WO3 layer changed. The sensor showed high reactivity even for hydrogen concentration below 4% (1%, 0.5%, 0.25%, and 0.1%), which was the lower limit of hydrogen ignition, and a linear relationship between hydrogen concentration and change in transmittance was found. Moreover, the resistance of the WO3 film significantly and instantaneously changed due to hydrogen-gas exposure, and the hydrogen concentration and resistance change showed a linear relationship. It is therefore possible to quantitatively detect low concentrations of hydrogen by using changes in transmittance and resistance as indices. Since these changes occur selectively under hydrogen at room temperature and normal pressure, they form the basis of a highly sensitive hydrogen sensor. Since the developed sensor is flexible, it has a high degree of freedom with respect to the shape of location in which the sensor
基金the financial support from the National Natural Science Foundation of China(Grant No.21878305)。
文摘Ultrafine or nano-sized of tungsten carbide(WC)is the key material to prepare ultrafine grained cemented carbides.In this paper,nano-sized WC powders were directly prepared by using industrial nano-needle violet tungsten oxide(WO2.72)as the raw material,a fluidized bed as the reactor,and CO as the carbonization gas.The relationship between particle sizes and reaction temperatures,residence times,atmospheres has been investigated systematically.In addition,the physical–chemical indexes(such as residual oxygen,total carbon and free carbon)of the products were measured.The results indicated that the particle size of WC increased with the increase of temperature from 800 to 950°C.As the residence time increased,the particle size decreased gradually,and then increased due to slight sintering.The introduction of hydrogen reduced the carbonization rate,and is not beneficial to obtaining nano-sized WC.Products that satisfy the standard were obtained when WO2.72 reacted with CO at 850°C,900°C and 950°C for 3.0 h,2.5 h and 2.0 h,respectively.The particle sizes of the three samples calculated from the specific surface area were 46.4 nm,53.2 nm and 52.1 nm,respectively.
基金supported by the National Natural Science Foundation of China(51803077,51872204)the National Key Research and Development Program of China(2017YFA0204600)+4 种基金the Natural Science Foundation of Jiangsu Province(BK20180627)Postdoctoral Science Foundation of China(2018M630517,2019T120389)the Ministry of Education(MOE)and the State Administration for Foreign Expert Affairs(SAFEA),111 Project(B13025)the National First-Class Discipline Program of Light Industry Technology and Engineering(LITE2018-19)the Fundamental Research Funds for the Central Universities。
文摘调控催化剂表面的化学键来平衡表面水分子的吸附和分解对于碱性溶液中水分解至关重要.本研究提出一种通过原位界面工程来设计与合成表面具有丰富的Ni-W金属键的Ni2W4C-W3C Janus异质结构的简便策略.预先将金属离子均匀分散在纳米纤维中,在碳化过程中,以电纺纤维为反应器,金属盐首先被还原成Ni和W3C.在持续分解的过程中,Ni原子原位插入W3C晶体中形成新的Ni2W4C相,得到Ni2W4C-W3C Janus异质结构.这使得W3C中原本惰性的W原子成为Ni2W4C中的活性位点.Ni2W4C-W3C/碳纳米纤维可以直接作为电极材料,其在碱性电解液中析氢活性达到10 m A/cm^2的电流密度需要63 m V过电位,析氧活性达到30 m A/cm^2的电流密度需要270 m V的过电位.若同时用作阴极和阳极进行全解水性能研究,其电池电压分别需要1.55和1.87 V就达到10和100 m A/cm^2.密度泛函理论结果表明,Ni与W之间的强相互作用增强了W原子的局域电子态.Ni2W4C为H-OH键的裂解提供了活性位点,W3C促进了Hads中间体与H2分子的结合.原位电化学拉曼光谱的结果表明该材料对水分子和羟基具有很强的吸收能力,W原子是真正的反应活性位点.该方法为构建高效电解水催化材料提供了另一种思路.
基金This material is based on work performed in SSWs laboratory,supported by the U.S.National Science Foundation under Grant No.CHE-1807640.Structural characterization experiments(TEM,SEM,and XPS)for this manuscript were performed in part at the Center for Functional Nanomaterials,located at Brookhaven National Laboratory,which is supported by the U.S.Department of Energy under Contract No.DE-SC-00112704.Authors from Columbia University acknowledge support from the U.S.Department of Energy,Office of Science,Catalysis Science Program(No.DE-FG02-13ER16381).B.M.T.acknowledges support from the U.S.Department of Energy,Office of Science,Office of Workforce Development for Teachers and Scientists,Office of Science Graduate Student Research(SCGSR)program.The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-SC0014664.
文摘We have sought to improve the electrocatalytic performance of tungsten nitride through synthetic control over chemical composition and morphology.In particular,we have generated a thermodynamically unstable but catalytically promising nitrogen-rich phase of tungsten via a hydrothermal generation of a tungsten oxide intermediate and subsequent annealing in ammonia.The net product consisted of three-dimensional(3D)micron-scale flower-like motifs of W2N3;this architecture not only evinced high structural stability but also incorporated the favorable properties of constituent two-dimensional nanosheets.From a performance perspective,as-prepared 3D W2N3 demonstrated promising hydrogen evolution reaction(HER)activities,especially in an acidic environment with a measured overpotential value of−101 mV at a current density of 10 mA/cm^2.To further enhance the electrocatalytic activity,small amounts of precious metal nanoparticles(such as Pt and Au),consisting of variable sizes,were uniformly deposited onto the underlying 3D W2N3 motifs using a facile direct deposition method;these composites were applied towards the CO2 reduction reaction(CO2RR).A highlight of this series of experiments was that Au/W2N3 composites were found to be a much more active HER(as opposed to either a CO2RR or a methanol oxidation reaction(MOR))catalyst.