Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform.In order to validate the performance of ShenGuang(SG) l...Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform.In order to validate the performance of ShenGuang(SG) laser facility and test nuclear diagnostics, all 48-beam lasers with an on-target energy of 48 kJ were firstly used to drive room-temperature, DT gas-filled glass targets.The optimization has been carried out and optimal drive uniformity was obtained by the combination of beam repointing and target.The final irradiation uniformity of less than 5% on polar direct-drive capsules of 540 μm in diameter was achieved, and the highest thermonuclear yield of the polar direct-drive DT fuel implosion at the SG was 1.04 × 10~(13).The experiment results show neutron yields severely depend on the irradiation uniformity and laser timing,and decrease with the increase of the diameter and fuel pressure of the target.The thin CH ablator does not impact the implosion performance, but the laser drive uniformity is important.The simulated results validate that the cos γ distribution laser design is reasonable and can achieve a symmetric pressure distribution.Further optimization will focus on measuring the symmetry of the hot spot by self-emission imaging, increasing the diameter, and decreasing the fuel pressure.展开更多
Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. ...Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.展开更多
A variable magnetization(VM) motor by incorporating magnets that can be flexibly configured with variable magnetization process is proposed to meet the emerging requirements on motor efficiency and actuator compliance...A variable magnetization(VM) motor by incorporating magnets that can be flexibly configured with variable magnetization process is proposed to meet the emerging requirements on motor efficiency and actuator compliance in robotic applications. A generalized spin torque model is established which provides a relationship between the motor torque and two different types of motor inputs, the current inputs and the magnet magnetizations. Avariable magnetization process is proposed based on the study of the hysteresis properties of the magnetic materials and the design criteria for implementing the variable magnetization process with current pulses are established. The feasibility of the variable magnetization is validated with experimental data and the motor functions and performances are numerically demonstrated and evaluated. The results show that the VM motor can maintain high efficiency by switching between two actuation modes. Controllable stiffness at different equilibria can be also achieved with the VM motor with instantaneous magnetizing current pulses.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11605178)the Science Challenging Project,China(Grant Nos.JCKY2016212A505 and TZ2016001).
文摘Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform.In order to validate the performance of ShenGuang(SG) laser facility and test nuclear diagnostics, all 48-beam lasers with an on-target energy of 48 kJ were firstly used to drive room-temperature, DT gas-filled glass targets.The optimization has been carried out and optimal drive uniformity was obtained by the combination of beam repointing and target.The final irradiation uniformity of less than 5% on polar direct-drive capsules of 540 μm in diameter was achieved, and the highest thermonuclear yield of the polar direct-drive DT fuel implosion at the SG was 1.04 × 10~(13).The experiment results show neutron yields severely depend on the irradiation uniformity and laser timing,and decrease with the increase of the diameter and fuel pressure of the target.The thin CH ablator does not impact the implosion performance, but the laser drive uniformity is important.The simulated results validate that the cos γ distribution laser design is reasonable and can achieve a symmetric pressure distribution.Further optimization will focus on measuring the symmetry of the hot spot by self-emission imaging, increasing the diameter, and decreasing the fuel pressure.
基金the PetroChina Science and Technology Project (2016B-4104).
文摘Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.
基金The National Natural Science Foundation of China (Grant Nos.51675194,U1713204).
文摘A variable magnetization(VM) motor by incorporating magnets that can be flexibly configured with variable magnetization process is proposed to meet the emerging requirements on motor efficiency and actuator compliance in robotic applications. A generalized spin torque model is established which provides a relationship between the motor torque and two different types of motor inputs, the current inputs and the magnet magnetizations. Avariable magnetization process is proposed based on the study of the hysteresis properties of the magnetic materials and the design criteria for implementing the variable magnetization process with current pulses are established. The feasibility of the variable magnetization is validated with experimental data and the motor functions and performances are numerically demonstrated and evaluated. The results show that the VM motor can maintain high efficiency by switching between two actuation modes. Controllable stiffness at different equilibria can be also achieved with the VM motor with instantaneous magnetizing current pulses.