期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
基于深度学习的花生高光谱图像分类方法研究 认领 被引量:3
1
作者 刘翠玲 林珑 +1 位作者 于重重 吴静珠 《计算机仿真》 北大核心 2020年第3期189-192,283共5页
利用高光谱成像技术对不同品种的花生进行快速无损分类。选取五种不同品种的花生,分别为东北小花生、富硒黑皮花生、花育36号、鲁花01号、鲁花09号,每种15颗,共75颗花生作为样本,采集400nm-1000nm波长范围内的高光谱图像,随机将6个特征... 利用高光谱成像技术对不同品种的花生进行快速无损分类。选取五种不同品种的花生,分别为东北小花生、富硒黑皮花生、花育36号、鲁花01号、鲁花09号,每种15颗,共75颗花生作为样本,采集400nm-1000nm波长范围内的高光谱图像,随机将6个特征波段(416nm、518nm、572nm、633nm、746nm、928nm)下的450个样本图像以2:1的比例分成训练集和测试集,建立基于深度学习的卷积神经网络模型。实验中所采用的网络模型为具有22层深度网络的GoogleNet模型,其中将dropout_ratio修改为0.6,训练集最终准确率为96%,测试集平均准确率为93.3%,每种花生的识别率均在90%及以上。最后与传统光谱处理方法PLS-DA进行对比,发现基于深度学习模型的识别率明显优于PLS-DA,结果表明,利用深度学习方法对花生快速无损分类具有可行性。 展开更多
关键词 高光谱成像技术 花生分类方法 深度学习
在线阅读 下载PDF
高光谱成像的豆腐形成过程中组分含量变化检测 认领
2
作者 王承克 张泽翔 +3 位作者 黄晓玮 邹小波 李志华 石吉勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第11期3549-3555,共7页
豆腐作为我国传统食品,其生产已有两千多年的生产历史,但目前市场上的豆腐还是以经验式小作坊生产为主,难以保证豆腐质量和品质的均一性。水分和蛋白质含量是影响豆腐品质的重要因素,然而,水分与蛋白质的传统检测方法过程繁琐,耗时、费... 豆腐作为我国传统食品,其生产已有两千多年的生产历史,但目前市场上的豆腐还是以经验式小作坊生产为主,难以保证豆腐质量和品质的均一性。水分和蛋白质含量是影响豆腐品质的重要因素,然而,水分与蛋白质的传统检测方法过程繁琐,耗时、费力,无法及时指导生产。因此,探索豆腐制备过程中水分和蛋白质分布的快速、无损、定量描述方法,可为精确调控豆腐制备工艺提供科学依据。应用高光谱成像技术结合化学计量学方法检测豆腐形成过程中豆浆、热浆、凝胶、豆腐四种不同状态下水分与蛋白质含量变化并实现其含量分布可视化。采集每种状态下120个样品在432~963 nm波段范围内的高光谱图像,利用ENVI软件选取感兴趣区域并计算样品的平均光谱数据。采用卷积平滑(savitzky-golay, SG)结合多元散射校正(multiplicative scatter correction, MSC)对原始光谱进行预处理,消除光谱噪声影响。用预处理后的光谱数据建立偏最小二乘回归(PLSR)和主成分回归(PCR)定量模型,比较发现豆浆、热浆、凝胶、豆腐样品的PCR模型对与水分和蛋白质的预测结果均低于PLSR模型。选用PLSR模型作为最优模型,采用连续投影算法(SPA)筛选豆浆、热浆、凝胶、豆腐样品的特征波长,分别选取13, 9, 8和9个特征波长建立基于特征波长下的PLSR模型。结果表明:与全波段下的PLSR模型相比基于特征波长建立的SPA+PLSR模型的预测效果更好,对水分的预测模型RP达到0.84~0.96,蛋白质的预测模型达到0.92~0.97。基于预测效果更好的SPA+PLSR模型计算豆浆、热浆、凝胶、豆腐图像中每个像素点的水分与蛋白质含量,将样品中的水分与蛋白质分布用不同的颜色直观显示,实现水分与蛋白质在不同状态下的分布。验证了高光谱技术对豆腐形成中水分与蛋白质含量检测的可行性,解决传统检测方法的缺陷,为豆腐生产的工业� 展开更多
关键词 豆腐 高光谱成像技术 分布可视化 水分 蛋白质
在线阅读 下载PDF
基于近红外高光谱成像快速无损检测注胶肉研究 认领 被引量:1
3
作者 何鸿举 朱亚东 +7 位作者 王魏 蒋圣启 马汉军 陈复生 刘玺 朱明明 赵圣明 王正荣 《食品工业科技》 CAS 北大核心 2020年第10期219-223,共5页
采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探... 采用近红外高光谱成像技术结合化学计量学方法建立注胶肉的快速无损检测模型。首先通过近红外高光谱成像系统获取含有不同浓度梯度卡拉胶的猪里脊肉高光谱图像,然后提取图像中的光谱数据,使用偏最小二乘法(Partial least square,PLS)探究光谱信息与不同掺假比例卡拉胶之间的定量关系。结果表明全波段光谱(900~1700 nm)所构建的PLS校正集模型均方根误差(Root mean square error,RMSE)为1.74%,预测模型RMSE为3.16%。表明基于全波段所建立的PLS模型具有较优的预测性能。利用连续投影算法(Successive projection algorithm,SPA)筛选获得11个特征波长,并优化全波长PLS模型,将预测集样品带入,以验证模型的预测效果,结果表明SPA算法结合PLS建模方法所建立的模型预测效果更优,预测集相关系数(RP)为0.93,均方根误差(Root mean square error of prediction,RMSEP)为3.51%,预测偏差(Residual predictive deviation,RPD)为2.66。试验表明利用高光谱成像技术可实现对注胶猪肉的快速无损检测。 展开更多
关键词 高光谱成像技术 注胶肉 偏最小二乘法 连续投影算法 无损检测
在线阅读 免费下载
NIR高光谱成像技术联用SPA算法快速检测五花肉的过氧化值 认领
4
作者 何鸿举 王洋洋 +6 位作者 王魏 蒋圣启 朱亚东 马汉军 陈复生 朱明明 赵圣明 《食品工业科技》 CAS 北大核心 2020年第8期236-241,共6页
利用近红外(NIR)高光谱成像技术结合连续投影算法(SPA)快速、无损检测五花肉的过氧化值。通过高光谱成像系统采集样品的光谱图像,提取其反射光谱信息,经过基线校正(BC)、高斯滤波平滑(GFS)、中值滤波平滑(MFS)、卷积平滑(SGS)、移动平... 利用近红外(NIR)高光谱成像技术结合连续投影算法(SPA)快速、无损检测五花肉的过氧化值。通过高光谱成像系统采集样品的光谱图像,提取其反射光谱信息,经过基线校正(BC)、高斯滤波平滑(GFS)、中值滤波平滑(MFS)、卷积平滑(SGS)、移动平均值平滑(MAS)、标准正态变量变换(SNV)、多元散射校正(MSC)七种预处理后,利用偏最小二乘(PLS)建立预测模型。使用SPA筛选最优波长,重新预算,构建优化的PLS模型和多元线性回归(MLR)模型。结果显示,经过BC预处理(RP=0.960,RMSEP=5.15×10-4 g/100 g)和原始数据RAW(RP=0.960,RMSEP=4.89×10-4 g/100 g)的全波段PLS模型(F-PLS)预测过氧化值效果较好。优化结果显示,RAW的MLR模型(RP=0.968,RMSEP=4.12×10-4 g/100 g)预测效果更好。研究表明,NIR高光谱成像技术联用SPA算法可潜在实现对五花肉过氧化值的快速无损检测。 展开更多
关键词 高光谱成像技术 过氧化值 偏最小二乘 连续投影算法 多元线性回归
在线阅读 免费下载
高光谱成像的猕猴桃形状特征检测 认领
5
作者 黎静 伍臣鹏 +6 位作者 刘木华 陈金印 郑建鸿 张一帆 王威 赖曲芳 薛龙 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第8期2564-2570,共7页
猕猴桃形状特征是猕猴桃在产后分级处理过程的一项重要指标,不仅影响果实外观,也决定果实等级高低的划分。传统的形状分级方法大多采用人工分级,存在耗时长、效率低、重复性差且易受人为主观影响等问题。针对传统猕猴桃形状分级存在的问... 猕猴桃形状特征是猕猴桃在产后分级处理过程的一项重要指标,不仅影响果实外观,也决定果实等级高低的划分。传统的形状分级方法大多采用人工分级,存在耗时长、效率低、重复性差且易受人为主观影响等问题。针对传统猕猴桃形状分级存在的问题,研究利用高光谱成像建立猕猴桃正常果和畸形果的分类检测方法。以成熟期的248个金魁猕猴桃(正常果107个,畸形果141个)作为研究样本,先利用可见-近红外高光谱成像系统采集猕猴桃样本的光谱数据,再采用主成分分析法对光谱数据进行降维,得到第一主成分图像。随后提取第一主成分图像的3个特征波长(682, 809和858 nm),并对其进行融合计算,生成新的光谱图像(融合图像)。然后利用四叉树分解算法对融合图像进行分割处理,并计算掩膜图像所对应的12组形状特征参数,结合偏最小二乘线性判别分析(PLS-LDA)、反向传播神经网络(BPNN)、最小二乘支持向量机(LSSVM)建立判别模型,对比分析,最终得到猕猴桃形状特征的最佳分类模型。结果表明,所建立的三种分类模型中, BPNN和LSSVM模型的分类效果较好,总体分类准确率均在95%以上;PLS-LDA的效果略差,训练集和测试集的总体准确率分别为80.12%和76.83%。其中BPNN模型训练集和测试集的总体分类准确率分别为98.19%和97.56%,总体误判个数分别为3和2,而LSSVM模型的总体准确率分别为97.59%和95.12%,总体误判个数分别为4和4。对猕猴桃正常果的检测,三种模型的分类效果分别为:LSSVM最好、 BPNN其次、 PLS-LDA最差。对猕猴桃畸形果的检测,三种模型的分类效果分别为:BPNN最优、 LSSVM其次, PLS-LDA效果最差。因此,猕猴桃形状特征的最佳分类模型是BPNN模型。试验结果说明,可利用高光谱成像对猕猴桃形状特征进行分类判别。为猕猴桃形状特征的快速、准确无损检测研究提供了理论支持。 展开更多
关键词 高光谱成像技术 形状特征 分类
在线阅读 下载PDF
基于高光谱成像技术预测牡蛎干制加工过程中的水分含量 认领 被引量:1
6
作者 陈李品 于繁千惠 +3 位作者 陶然 陈桂东 李兆杰 薛长湖 《中国食品学报》 EI CAS CSCD 北大核心 2020年第7期261-268,共8页
提出一种应用高光谱成像技术结合化学计量学检测牡蛎干制加工过程中水分含量的方法。采用高光谱成像系统,在400~1100 nm范围内,采集到5个干燥时期的100个牡蛎干样本高光谱图像。提取所有样本感兴趣区域的平均光谱数据,对原始光谱数据进... 提出一种应用高光谱成像技术结合化学计量学检测牡蛎干制加工过程中水分含量的方法。采用高光谱成像系统,在400~1100 nm范围内,采集到5个干燥时期的100个牡蛎干样本高光谱图像。提取所有样本感兴趣区域的平均光谱数据,对原始光谱数据进行多元散射校正(MSC)、卷积平滑(S-G)预处理,采用相关系数法提取8个特征波长。基于所提取的特征波长,建立光谱数据与水分含量的多元线形回归(MLR)和BP神经网络模型。结果表明:两种模型均有较好的预测效果。MLR模型的校正集、预测集和交叉验证集的相关系数较BP神经网络低;校正集、预测集和交叉验证集均方根误差分析结果表明,BP神经网络效果较MLR好。高光谱成像技术结合化学计量学方法可检测牡蛎干制过程中水分含量的变化。 展开更多
关键词 牡蛎 水分 高光谱成像技术 化学计量学
在线阅读 下载PDF
基于高光谱成像技术识别苹果轻微损伤的有效波段研究 认领
7
作者 沈宇 房胜 +3 位作者 王风云 李哲 张琛 郑纪业 《中国农业科技导报》 CAS CSCD 北大核心 2020年第3期64-71,共8页
为了筛选出适用于开发苹果轻微损伤自动分级仪器的有效波段,以200个烟台富士苹果为对象进行研究。首先获取400~1000 nm波长范围内完好和轻微损伤后0、0.5、1 h的苹果高光谱图像,然后提取完好与损伤样本感兴趣区域的平均光谱反射率数据,... 为了筛选出适用于开发苹果轻微损伤自动分级仪器的有效波段,以200个烟台富士苹果为对象进行研究。首先获取400~1000 nm波长范围内完好和轻微损伤后0、0.5、1 h的苹果高光谱图像,然后提取完好与损伤样本感兴趣区域的平均光谱反射率数据,再利用载荷系数法(x-LW)、连续投影法(SPA)和二阶导数(second derivative)法提取特征波长,分别提取3、9和20个特征波长,并根据特征波长建立基于遗传算法优化的BP神经网络(GA-BP)和支持向量机(SVM)损伤识别模型。结果显示,三种基于特征波长提取方法建立的SVM模型对测试集的识别率(分别为77.50%、91.88%、96.88%)均高于BP-GA模型(分别为75.63%、90.63%、93.75%),因此,SVM被确定为最佳苹果轻微损伤识别模型。最后,利用每一特征波长分别作为变量建立SVM模型。结果发现,波段811 nm识别率达到90.63%,优于其他波段,被确定为苹果轻微损伤识别的最优波段。 展开更多
关键词 高光谱成像技术 轻微损伤识别 有效波段 连续投影法 二阶导数法 机器学习
在线阅读 下载PDF
贮藏期内灵武长枣果糖含量的高光谱预测 认领 被引量:1
8
作者 万国玲 刘贵珊 +3 位作者 何建国 杨晓玉 程丽娟 张翀 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第10期3261-3266,共6页
高光谱成像可将图像和光谱相结合,同时获得目标对象的图像和光谱信息,已在农产品定性和定量分析检测方面得到广泛利用。利用可见-近红外高光谱成像结合化学计量学方法对贮藏期内灵武长枣果糖含量进行无损检测。采用高效液相色谱测量长... 高光谱成像可将图像和光谱相结合,同时获得目标对象的图像和光谱信息,已在农产品定性和定量分析检测方面得到广泛利用。利用可见-近红外高光谱成像结合化学计量学方法对贮藏期内灵武长枣果糖含量进行无损检测。采用高效液相色谱测量长枣果糖含量的化学值,可见-近红外高光谱系统采集长枣的高光谱图像,提取每个样本感兴趣区域的平均光谱;建立长枣贮藏期的径向基核函数支持向量机(radial basis kernel function support vector machine,RBF-SVM)模型;分别选用正交信号校正法(orthogonal signal correction,OSC)、多元散射校正(multiplicative scatter correction,MSC)、中值滤波(median-filter,MF)、卷积平滑(savitzky-golay,SG)、归一化(normalization,Nor)、高斯滤波(gaussian-filter,GF)和标准正态变换(standard normalized variate,SNV)等方法对原始光谱进行预处理;为减少数据量,降低维度,提高运算速度,采用反向区间偏最小二乘法(backward interval partial least squares,BiPLS)、间隔随机蛙跳算法(interval random frog,IRF)和竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)对光谱数据提取特征变量;建立全波段和特征波段的偏最小二乘回归(partial least squares regression,PLSR)和主成分回归(principle component regression,PCR)长枣果糖含量预测模型。结果表明:RBF-SVM判别模型校正集准确率为98.04%,预测集准确率为97.14%,能很好地预测长枣的贮藏期;利用BiPLS,IRF及CARS进行降维处理,提取特征波长个数为100,63和23,占原光谱数据的80%,50.4%和18.4%;为简化模型运算过程并提高模型精度,采用CARS算法对BiPLS及IRF算法所选取的特征波长进行二次筛选,分别优选出18和15个特征波长,占原光谱数据的14.4%和12%,显著减少特征波长数;将全波段光谱与提取出的特征波长分别建立长枣果糖含量的PLSR及PCR预测模型,优选出CARS提取特征波长建立的PLSR模型效果 展开更多
关键词 高光谱成像技术 果糖 贮藏期 高效液相色谱法 偏最小二乘回归
在线阅读 下载PDF
高光谱成像技术在充胶处理宝石鉴定中的应用—以翡翠和绿松石为例 认领 被引量:1
9
作者 刘欣蔚 陈美华 刘媛 《宝石和宝石学杂志》 CAS 2019年第1期1-11,共11页
20世纪80年代,一种传统影像学和光谱学结合形成的新型技术——高光谱成像技术开始兴起并迅速发展,使用高光谱成像测试仪可以得到集图像数据和光谱数据于一体的三维数据信息,而该项技术在宝石学方面还未得到广泛应用。目前主要依赖红外... 20世纪80年代,一种传统影像学和光谱学结合形成的新型技术——高光谱成像技术开始兴起并迅速发展,使用高光谱成像测试仪可以得到集图像数据和光谱数据于一体的三维数据信息,而该项技术在宝石学方面还未得到广泛应用。目前主要依赖红外光谱对经充胶处理的宝石进行无损检测,其测试结果会受到样品表面抛光程度及样品透明度的影响,同时,对胶物质分布及充胶程度较难得知。高光谱成像技术对样品抛光程度及透明度要求不高,在一定程度上能避免红外光谱由于抛光程度、透明度对测试结果的影响,且能得知充胶物质分布及充胶程度。采用小型高光成像仪对充胶翡翠、有机充胶绿松石和天然翡翠、绿松石进行测试,并将结果用ENVI软件进行处理。结果显示,1000~2500nm(近红外波段)翡翠和绿松石样品的成像光谱信息,其中翡翠充胶处理样品出现1733、2208、2313nm处的吸收,绿松石充胶样品在2000~2300nm范围多吸收峰特征可与天然绿松石区别,推测其中1733nm处的吸收为有机胶所致。高光谱成像光谱测试结果经ENVI软件处理,得到充胶分布和充胶程度图。 展开更多
关键词 高光谱成像技术 充胶处理 翡翠 绿松石 近红外光谱
在线阅读 下载PDF
光谱技术在乳及乳制品研究中的应用进展 认领 被引量:2
10
作者 剧柠 胡婕 《食品与机械》 北大核心 2019年第1期232-236,共5页
文章阐述了光谱技术在乳及乳制品掺假和掺伪检测、营养成分检测、抗生素检测、微生物污染检测,乳及乳制品种类的鉴定等方面的应用。综述了近红外光谱、拉曼光谱、高光谱成像技术在乳及乳制品品质检测和安全评定上的重要应用和研究进展,... 文章阐述了光谱技术在乳及乳制品掺假和掺伪检测、营养成分检测、抗生素检测、微生物污染检测,乳及乳制品种类的鉴定等方面的应用。综述了近红外光谱、拉曼光谱、高光谱成像技术在乳及乳制品品质检测和安全评定上的重要应用和研究进展,指出多种技术联合应用是未来研究的趋势。 展开更多
关键词 乳及乳制品 近红外光谱 拉曼光谱 高光谱成像
在线阅读 免费下载
酥梨货架期的高光谱成像无损检测模型研究 认领 被引量:1
11
作者 李雄 刘燕德 +4 位作者 欧阳爱国 孙旭东 姜小刚 胡军 欧阳玉平 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第8期2578-2583,共6页
水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、... 水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、成像光谱仪、电控位移平台和计算机等构成的高光谱成像装置采集样品光谱,装置光源采用额定功率为200 W四个溴钨灯泡成梯形结构设计,光谱范围为 1 000 ~2 500 nm,分别率为10 nm。选取优质酥梨30个,货架期设置为1, 5和10 d,对30个样品完成3次光谱图像的采集,并矫正原始图像。实验结果表明:基于图像的酥梨货架期定性分析时,对不同货架期样品的原始图像进行PCA压缩,得到三种不同货架期的权重系数数据, PC1图像提取特征波长点为 1 280 , 1 390 , 1 800 , 1 880和2 300 nm,以特征图像的平均灰度值作为自变量且以货架期作为因变量建立定性判别模型,建模集68个,预测集22个。最小二乘支持向量机以RBF为核函数时,预测集中样品的误判个数为1,误判率为4.5%。而当采用lin核函数时,样品的误判个数为0,误判率为0。 PLS-DA定性分析时RMSEC为1.24, R c为0.93。 RMSEP为1, R p为0.96,预测集误判率为0。特征图像对酥梨货架期判别LS-SVM中的lin核函数所建立的模型结果较好,优于RBF核函数的建模效果,也优于PLS-DA判别模型。 ENVI软件提取实验样品光谱后建立LS-SVM和PLS-DA判别模型, LS-SVM利用RBF和lin核函数误判率分别为4.5%和0。与RBF核函数相比, lin核函数所建立的模型预测酥梨货架期的效果更好。 PLS-DA方法主成分因子数为12, RMSEC和RMSEP分别为0.48和0.78, R c和 R p分别为0.99和0.97,建模集与预测集的误判率均为零。 LS-SVM中的lin核函数所建立的模型结果较好,依然优于PLS所建立的检测模型。酥梨的光谱信息结合LS-SVM可以实现对酥梨货架期的检测和判别。基于图像建� 展开更多
关键词 高光谱成像 货架期 特征图像 最小二乘判别 偏最小二乘支持向量机
在线阅读 下载PDF
基于高光谱成像技术的草莓硬度预测 认领
12
作者 卢娜 韩平 王纪华 《软件导刊》 2018年第3期180-182,共3页
为对草莓硬度进行预测研究,利用高光谱成像系统获取草莓的高光谱数据,光谱数据波长为400-1 000nm,采用标准正态变换(SNV)、多元散射校正(MSC)、卷积平滑方法(Savitzky-Golay)以及几种方法相结合对光谱数据进行预处理,选择最优的... 为对草莓硬度进行预测研究,利用高光谱成像系统获取草莓的高光谱数据,光谱数据波长为400-1 000nm,采用标准正态变换(SNV)、多元散射校正(MSC)、卷积平滑方法(Savitzky-Golay)以及几种方法相结合对光谱数据进行预处理,选择最优的预处理方法,进一步结合化学计量学方法建立PLS预测模型,比较不同的光谱预处理方法对预测模型的效果,以选择最优预测模型。结果表明,经标准正态变换(SVN)处理后建立的偏最小二乘(PLS)模型效果最好,校正集和预测集的相关系数及均方根误差分别为0.989,0.882和0.021,0.073。因此,可采用高光谱成像技术对草莓硬度进行预测。 展开更多
关键词 高光谱成像技术 草莓 硬度 无损检测
在线阅读 免费下载
基于高光谱成像技术识别水稻纹枯病 认领 被引量:4
13
作者 李志伟 袁婧 +3 位作者 丁为民 杨红兵 沈少庆 崔嘉林 《华南农业大学学报》 CAS CSCD 北大核心 2018年第6期97-103,共7页
【目的】利用高光谱成像技术对水稻纹枯病进行早期的快速无损识别,结合判别分析方法建立相应的鉴别模型。【方法】以健康和感染纹枯病的水稻幼苗为研究对象,采集叶片和冠层各180个样本的380~1 030 nm波段的360条高光谱图像,剔除明显噪... 【目的】利用高光谱成像技术对水稻纹枯病进行早期的快速无损识别,结合判别分析方法建立相应的鉴别模型。【方法】以健康和感染纹枯病的水稻幼苗为研究对象,采集叶片和冠层各180个样本的380~1 030 nm波段的360条高光谱图像,剔除明显噪声部分后,以440~943 nm波段作为水稻样本的光谱范围,分别用不同的方法预处理获得水稻叶片的光谱曲线。采用偏最小二乘–判别分析(PLS-DA)对不同预处理的光谱建模。采用MNF算法对冠层的原始光谱数据进行特征信息提取,并基于特征信息建立线性判别分析(LDA)模型和误差反向传播神经网络(BPNN)判别模型。【结果】标准正态变量变换(SNV)预处理后建立的PLS-DA模型的预测集判别正确率最高,为92.1%。基于特征信息的LAD和BPNN模型的判别结果优于基于全波段的PLS-DA判别模型。基于最小噪声分离变换特征信息提取的BPNN模型取得了最优效果,建模集和预测集正确率分别达99.1%和98.4%。【结论】采用高光谱成像技术对水稻纹枯病生理特征进行无损鉴别是可行的,本研究为水稻纹枯病的识别提供了一种新方法。 展开更多
关键词 水稻纹枯病 无损检测 高光谱成像技术 偏最小二乘法 最小噪声分离变换 线性判别分析
在线阅读 下载PDF
基于高光谱成像的香肠菌落总数回归预测及数据可视化 认领 被引量:2
14
作者 董小栋 郭培源 徐盼 《现代食品科技》 北大核心 2017年第7期308-314,共7页
香肠的好坏有很多种评价指标,菌落总数(TVC)是其中的一种。高光谱成像技术已经成为一种快速、无损检测食品品质的有效方法。本文利用高光谱成像技术对香肠的菌落总数进行了定量分析,对数据进行了主成分分析(PCA),研究发现数据集中... 香肠的好坏有很多种评价指标,菌落总数(TVC)是其中的一种。高光谱成像技术已经成为一种快速、无损检测食品品质的有效方法。本文利用高光谱成像技术对香肠的菌落总数进行了定量分析,对数据进行了主成分分析(PCA),研究发现数据集中前四个主成分累计贡献率已达97.65%,已经可以反映出香肠所包含的绝大部分信息。对前四个主成分对应的优化区间采用高斯核函数的SVM回归模型进行预测,并为了提高回归预测模型的精确度,对模型的c,g参数,进行了遗传算法(GA)、网格搜索算法和粒子群算法(PSO)寻优对比,其中PSO寻优可使回归预测值和真实值的相关系数为0.9777,交互验证均方根误差为0.0823,能够准确快速的实现香肠菌落总数的预测。除此之外,利用python对回归预测的数据进行可视化,更加直观的显示菌落总数变化,且可以达到实时观看的效果。 展开更多
关键词 香肠 菌落总数 高光谱成像 SVM 可视化
采后葡萄可溶性固形物含量的高光谱成像检测研究 认领 被引量:2
15
作者 徐丽 杨杰 +3 位作者 王运祥 叶晋涛 马本学 吕琛 《河南农业科学》 CSCD 北大核心 2017年第3期143-147,共5页
提出一种应用高光谱成像技术检测葡萄可溶性固形物含量的方法。使用高光谱成像系统采集葡萄漫反射光谱,在500~1 000 nm光谱,采用多元散射校正(MSC)、标准正态变换(SNV)进行光程校正,结合一阶微分(1-Der)、二阶微分(2-Der)、Savi... 提出一种应用高光谱成像技术检测葡萄可溶性固形物含量的方法。使用高光谱成像系统采集葡萄漫反射光谱,在500~1 000 nm光谱,采用多元散射校正(MSC)、标准正态变换(SNV)进行光程校正,结合一阶微分(1-Der)、二阶微分(2-Der)、Savitzky-Golay(S-G)平滑方法及其组合对原始光谱进行预处理,建立可溶性固形物含量的偏最小二乘法(PLS)和逐步多元线性回归(SMLR)模型。结果表明:采用PLS和SMLR建模方法均取得较好的预测效果。采用经过MSC、1-Der和S-G平滑相结合预处理后的光谱建立PLS预测模型,校正集的相关系数Rc为0.979 1,RMSEC为0.265,预测集的相关系数Rp为0.962 0,RMSEP为0.372;采用原始光谱、1-Der和SG平滑相结合预处理后的光谱建立SMLR预测模型,校正集的相关系数Rc为0.967 8,RMSEC为0.327,预测集的相关系数Rp为0.947 2,RMSEP为0.394。以上表明,基于高光谱成像技术可以实现采后葡萄可溶性固形物含量的准确无损检测。 展开更多
关键词 高光谱成像技术 光谱分析 葡萄 可溶性固形物 偏最小二乘法
在线阅读 下载PDF
宁夏赤霞珠葡萄水分含量的高光谱无损检测研究 认领 被引量:5
16
作者 蔡正云 吴龙国 +3 位作者 王菁 潘媛 马建荣 李梓溢 《食品工业科技》 CAS CSCD 北大核心 2017年第2期79-83,88共6页
利用可见近红外高光谱成像技术对宁夏赤霞珠葡萄含水量的无损检测进行了初步探讨。通过高光谱成像系统(400-1000nm)采集了136幅赤霞珠葡萄图像,对原始光谱、平均平滑、高斯滤波、中值滤波、卷积平滑、归一化、多元散射校正、标准正... 利用可见近红外高光谱成像技术对宁夏赤霞珠葡萄含水量的无损检测进行了初步探讨。通过高光谱成像系统(400-1000nm)采集了136幅赤霞珠葡萄图像,对原始光谱、平均平滑、高斯滤波、中值滤波、卷积平滑、归一化、多元散射校正、标准正态化、基线校准、去趋势化等预处理的偏最小二乘回归(PLSR)模型进行对比分析;采用主成分分析(PCA)、偏最小二乘回归(PLSR)、连续投影算法(SPA)、竞争性自适应重加权(CARS)方法选择特征波长,建立4种特征波长下的PLSR的葡萄含水量预测模型,优选CARS提取特征波长的方法。在此基础上,对比分析了全波段与特征波长下的MLR、PCR、PLSR的葡萄含水量预测模型。结果表明:采用多元散射校正(MSC)光谱建立的PLSR模型优于原始光谱和其他预处理光谱的PLSR模型;CARS提取特征波长建立的PLSR模型优于多元线性回归(MLR)、主成分回归(PCR)模型,预测集的相关系数(R)和预测均方根误差(RMSEP)分别为0.806、0.144。因此,利用可见近红外高光谱成像技术提取特征波长进行宁夏赤霞珠葡萄含水量的检测是可行的。 展开更多
关键词 高光谱成像技术 酿酒葡萄 含水量 无损检测
在线阅读 免费下载
基于高光谱成像的柑橘黄龙病无损检测 认领 被引量:11
17
作者 刘燕德 肖怀春 +3 位作者 孙旭东 曾体伟 张智诚 刘宛坤 《农业机械学报》 EI CAS CSCD 北大核心 2016年第11期231-238,277共9页
采用高光谱成像技术,结合最小二乘支持向量机(LS-SVM)和偏最小二乘判别分析(PLS-DA)2种方法,探索柑橘黄龙病快速无损检测的可行性。在380~1 080 nm光谱范围内,采集正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种柑橘叶片的高... 采用高光谱成像技术,结合最小二乘支持向量机(LS-SVM)和偏最小二乘判别分析(PLS-DA)2种方法,探索柑橘黄龙病快速无损检测的可行性。在380~1 080 nm光谱范围内,采集正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种柑橘叶片的高光谱图像。采用方差分析方法,分析了正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种叶片的叶绿素、淀粉和可溶性糖含量间的差异,表明3指标可作为判别黄龙病的指示性指标。采用偏最小二乘法,建立了叶绿素、可溶性糖及淀粉3指标含量的定量分析数学模型,模型预测均方根误差分别为7.46、5.51、5.88,提供了柑橘黄龙病高光谱成像快速检测依据。提取高光谱图像感兴趣区域的平均光谱,通过分析正常、轻度黄龙病、中度黄龙病、重度黄龙病和缺素5种叶片的代表性光谱,在750 nm处吸光度存在差异。采用2阶导数处理样品光谱,消除了450~650 nm和800~1 000 nm波段的基线漂移,放大了有效光谱信息。采用主成分分析(PCA)和连续投影算法(SPA)筛选柑橘黄龙病LS-SVM定性判别模型的输入变量,建立了LS-SVM定性判别模型,同时与PLS-DA进行对比。采用未参与建模的预测集样品评价模型性能,结果表明PLS-DA模型判别柑橘黄龙病的准确率更高,模型误判率为5.6%。实验结果表明,高光谱成像技术结合偏最小二乘判别分析方法可实现柑橘黄龙病快速无损检测与黄龙病病情等级判别。 展开更多
关键词 柑橘 黄龙病 高光谱成像技术 最小二乘支持向量机 偏最小二乘判别分析
在线阅读 下载PDF
高光谱技术诊断马铃薯叶片晚疫病的研究 认领 被引量:6
18
作者 胡耀华 平学文 +2 位作者 徐明珠 单卫星 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第2期515-519,共5页
鉴于晚疫病可对马铃薯造成毁灭性灾害,对受晚疫病胁迫的马铃薯叶片进行了高光谱图像特征研究。旨在探索马铃薯叶片的高光谱图象特征与晚疫病害程度的关联,以实现准确、快速、无损的晚疫病诊断。采用60片马铃薯叶片,对其中48片采用离体... 鉴于晚疫病可对马铃薯造成毁灭性灾害,对受晚疫病胁迫的马铃薯叶片进行了高光谱图像特征研究。旨在探索马铃薯叶片的高光谱图象特征与晚疫病害程度的关联,以实现准确、快速、无损的晚疫病诊断。采用60片马铃薯叶片,对其中48片采用离体方式接种晚疫病菌,所剩12片作为对照,染病前后连续观测7天,得到染病和健康样本。健康和染病样本按照染病时间和染病程度不同采用374~1 018nm波段范围的可成像高光谱仪分别采样,基于ENVI软件处理平台提取图像中感兴趣区的光谱信息,并采用移动平均平滑、导数处理、光谱变换、基线变换等预处理方法提高信噪比,建立了最小二乘支持向量机(LS-SVM)的识别模型。9个模型中,基于原始光谱(不预处理)和光谱变换预处理后的数据所建立的模型预测效果最好,识别率均达到了94.87%。表明基于高光谱成像技术可以实现晚疫病胁迫下马铃薯病害程度的有效区分。 展开更多
关键词 高光谱成像技术 马铃薯 晚疫病 最小二乘支持向量机
在线阅读 下载PDF
基于高光谱图像技术的腊肠酸价含量检测 认领 被引量:3
19
作者 刘硕 郭培源 +1 位作者 杨昆程 赵俊华 《食品工业科技》 CAS CSCD 北大核心 2016年第5期287-291,297共6页
本文以腊肠为研究对象,探讨了高光谱图像技术对其酸价检测的可行性。研究中,对高光谱成像系统获得的数据进行了MNF变换、PPI纯净指数计算、n-D Visualizer等处理,获得纯净的光谱数据信息。采用主成分分析,获得主成分图像,选取PC2作为分... 本文以腊肠为研究对象,探讨了高光谱图像技术对其酸价检测的可行性。研究中,对高光谱成像系统获得的数据进行了MNF变换、PPI纯净指数计算、n-D Visualizer等处理,获得纯净的光谱数据信息。采用主成分分析,获得主成分图像,选取PC2作为分析对象,通过比较权重系数,选取六个特征波长943.28、1003.20、1136.53、1240.03、1326.95、1477.64 nm,并通过特征波长,选定1000-1500 nm波长范围作为光谱分析区域。利用PLS建模方法将高光谱数据与酸价实际值关联,获得腊肠酸价评价模型。采用一阶导+SG(17)+矢量归一化和二阶导+SG(21)+矢量归一化校正方法建立校正模型,校正集RMSECV和R-2分别为0.28,0.97和0.31和0.96,验证集RPD分别为2.92和2.89,一阶导+SG(17)+矢量归一化建立的PLS模型更适合酸价的定量检测,模型预测值平均重复性标准差为0.22,模型预测值平均相对误差为10.32%。研究结果表明,高光谱图像技术检测腊肠酸价含量是可行的。 展开更多
关键词 酸价 高光谱图像技术 PLS 主成分分析
在线阅读 免费下载
马铃薯叶片早疫病的高光谱识别研究 认领 被引量:5
20
作者 徐明珠 李梅 +2 位作者 白志鹏 胡耀华 何勇 《农机化研究》 北大核心 2016年第6期205-209,共5页
为实现马铃薯叶片早疫病的快速识别,达到尽早防治的目的,利用高光谱成像系统连续4天采集375~1018nm波段内的健康和染病马铃薯叶片的高光谱数据信息,并用ENVI软件提取感兴趣区域的光谱反射率平均值。分别建立基于全光谱(full spectrum,FS... 为实现马铃薯叶片早疫病的快速识别,达到尽早防治的目的,利用高光谱成像系统连续4天采集375~1018nm波段内的健康和染病马铃薯叶片的高光谱数据信息,并用ENVI软件提取感兴趣区域的光谱反射率平均值。分别建立基于全光谱(full spectrum,FS)、连续投影算法(SPA)和载荷系数法(x-LW)提取的特征波长的BP网络和LS-SVM识别模型,其中FS-BP、SPA-BP、x-LW-BP模型中预测集识别率分别为100%、100%、98.33%,LS-SVM模型的预测集识别率均为100%;SPA和x-LW提取的特征波长个数均仅占全波长的1.47%,大大简化了模型,提高了运算速率。实验表明:应用高光谱成像技术可以快速、准确地识别出马铃薯叶片早疫病,且SPA和x-LW可以作为特征波长提取的有效方法,为田间马铃薯早疫病的在线实时检测仪器的开发提供理论依据。 展开更多
关键词 马铃薯 早疫病 高光谱成像技术 特征波长 识别模型
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部 意见反馈