期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
杂波背景下基于概率假设密度的辅助粒子滤波检测前跟踪改进算法 预览
1
作者 裴家正 黄勇 +2 位作者 董云龙 何友 陈小龙 《雷达学报》 CSCD 北大核心 2019年第3期355-365,共11页
在杂波背景条件下,现有的基于概率假设密度(PHD)滤波的粒子滤波检测前跟踪(TBD)算法,存在对密集多目标数目估计不准,使用粒子数目较多会造成维数灾难的问题。因此,该文引入两层粒子的概念,将基于平行分割(PP)理论的辅助粒子滤波(APF)应... 在杂波背景条件下,现有的基于概率假设密度(PHD)滤波的粒子滤波检测前跟踪(TBD)算法,存在对密集多目标数目估计不准,使用粒子数目较多会造成维数灾难的问题。因此,该文引入两层粒子的概念,将基于平行分割(PP)理论的辅助粒子滤波(APF)应用于基于概率假设密度的检测前跟踪(PHD-TBD)算法中,提出基于概率假设密度滤波的平行分割辅助粒子滤波检测前跟踪(APP-PF-PHD-TBD)算法以提高目标数目及状态估计精度。仿真实验证明,相对于现有基于PHD的粒子滤波检测前跟踪算法,该算法在目标数目和状态估计精度上具有显著的性能优势,在密集目标场景下,优势尤为突出。最后,利用导航雷达实测所得海杂波背景数据证明,该算法在应用中性能更加优异。 展开更多
关键词 平行分割 辅助粒子滤波 概率假设密度 检测前跟踪 随机有限集
在线阅读 免费下载
基于ET-PHD的自适应联合跟踪与分类算法 预览
2
作者 樊鹏飞 李鸿艳 《自动化学报》 EI CSCD 北大核心 2019年第2期349-359,共11页
针对新生目标强度先验未知的扩展目标(Extended target, ET)联合跟踪与分类(Joint tracking and classification,JTC)问题,提出一种基于扩展目标概率假设密度(Extended target-probability hypothesis density, ET-PHD)滤波器的自适应... 针对新生目标强度先验未知的扩展目标(Extended target, ET)联合跟踪与分类(Joint tracking and classification,JTC)问题,提出一种基于扩展目标概率假设密度(Extended target-probability hypothesis density, ET-PHD)滤波器的自适应联合跟踪与分类算法,并给出其高斯混合实现方法.算法利用量测信息生成新生目标强度,在滤波预测阶段对存活目标和新生目标分别按照其类别进行传播,再引入属性量测信息,用位置和属性的联合量测似然函数代替单目标位置似然函数,对预测后所有目标强度进行联合更新,之后按照类别进行高斯项的删减与合并,提取相应类别目标的状态集.仿真结果表明,提出的自适应算法改进了概率假设密度滤波器在扩展目标跟踪中的性能. 展开更多
关键词 扩展目标 联合跟踪与分类 新生目标强度 概率假设密度
在线阅读 下载PDF
基于双马尔可夫链的概率假设密度滤波器 预览
3
作者 刘江义 王春平 王暐 《系统工程与电子技术》 EI CSCD 北大核心 2019年第5期944-950,共7页
隐式马尔可夫链(hidden Markov chain,HMC)是传统多目标跟踪的理论基础。在分析了HMC模型的局限性基础上,介绍了更具普适性的双马尔可夫链(pairwise Markov chain,PMC)模型,对基于PMC模型的概率假设密度(PMC-probability hypothesis den... 隐式马尔可夫链(hidden Markov chain,HMC)是传统多目标跟踪的理论基础。在分析了HMC模型的局限性基础上,介绍了更具普适性的双马尔可夫链(pairwise Markov chain,PMC)模型,对基于PMC模型的概率假设密度(PMC-probability hypothesis density,PMC-PHD)滤波算法进行了推导,并对其高斯混合(Gauss mixture,GM)实现进行了改进,利用椭圆波门给每一个高斯分量建立一个对应的缩减量测集合来对其进行更新。仿真实验证明在杂波密度较大的场景中,PMC-PHD滤波器GM实现的改进在不影响跟踪精度的情况下运行时间缩短为原来的三分之一;仿真实验还证明在HMC模型场景下PMC-PHD滤波器针对邻近目标的跟踪性能要优于HMC-PHD滤波器。 展开更多
关键词 双马尔可夫链 概率假设密度 高斯混合
在线阅读 下载PDF
箱粒子PHD演化网络群目标跟踪算法 被引量:3
4
作者 宋骊平 刘宇航 程轩 《控制与决策》 CSCD 北大核心 2018年第1期74-80,共7页
群演化网络模型对群结构的构建和实时更新提供了良好的实现方式.针对粒子概率假设密度(SMCPHD)滤波算法存在运算量大的问题,提出一种基于箱粒子概率假设密度(BP-PHD)滤波的演化网络群目标跟踪算法.将群演化网络模型得到的群结构信... 群演化网络模型对群结构的构建和实时更新提供了良好的实现方式.针对粒子概率假设密度(SMCPHD)滤波算法存在运算量大的问题,提出一种基于箱粒子概率假设密度(BP-PHD)滤波的演化网络群目标跟踪算法.将群演化网络模型得到的群结构信息反馈回BP-PHD滤波过程中,从而实现群目标的跟踪和群数目的估计.对比实验表明,所提出算法可以在保证跟踪效果的同时减少计算量,并且在杂波密集的条件下具有更好的跟踪精度和鲁棒性. 展开更多
关键词 演化网络模型 群目标跟踪 箱粒子滤波 概率假设密度
基于贝塔高斯概率假设密度的扩展目标跟踪 预览
5
作者 李文娟 吕婧 +1 位作者 顾红 苏卫民 《系统工程与电子技术》 CSCD 北大核心 2018年第9期1897-1904,共8页
基于二项分布的扩展目标概率假设密度(extended target probability hypothesis density based on binominal distribution,BET-PHD)算法能够获得比泊松ET-PHD更好的跟踪性能。然而,BET-PHD中作为先验信息的检测概率和量测数目最大值... 基于二项分布的扩展目标概率假设密度(extended target probability hypothesis density based on binominal distribution,BET-PHD)算法能够获得比泊松ET-PHD更好的跟踪性能。然而,BET-PHD中作为先验信息的检测概率和量测数目最大值在实际应用中是未知的。参数严重不匹配会导致算法性能急剧下降。鉴于已有文献给出量测数目最大值的估计方法,提出一种能够在线估计检测概率的贝塔高斯ET-PHD(beta Gaussian ET-PHD,BG-ET-PHD)滤波器。首先采用二项分布的共轭先验贝塔分布估计检测概率,并与BET-PHD相结合得到BG-ET-PHD。仿真结果表明,BG-ET-PHD滤波器能够准确估计检测概率,能够获得比基于泊松模型的伽马高斯ET-PHD(gamma Gaussian ET-PHD,GG-ET-PHD)更好的跟踪性能。 展开更多
关键词 扩展目标跟踪 概率假设密度 二项分布 贝塔分布
在线阅读 下载PDF
基于Mean Shift迭代的新生未知多扩展目标跟踪 被引量:2
6
作者 李翠芸 桂阳 刘靳 《控制与决策》 EI CSCD 北大核心 2017年第3期521-525,共5页
针对当前基于随机集的多扩展目标跟踪算法存在计算量大、量测划分不准确和跟踪误差大的问题,在PHD滤波基础上提出一种基于均值漂移(Mean Shift)迭代的新生未知多扩展目标跟踪算法.首先,对聚类后量测数据进行关联,得到新生目标状态,解... 针对当前基于随机集的多扩展目标跟踪算法存在计算量大、量测划分不准确和跟踪误差大的问题,在PHD滤波基础上提出一种基于均值漂移(Mean Shift)迭代的新生未知多扩展目标跟踪算法.首先,对聚类后量测数据进行关联,得到新生目标状态,解决目标新生问题;然后,通过Mean Shift迭代获得目标量测集质心,将扩展目标的多量测问题转化为点量测处理;最后,给出其粒子实现方式.仿真实验表明,所提出的算法可以降低跟踪复杂度,提高跟踪效率,在交叉时刻具有稳定的跟踪性能。 展开更多
关键词 多扩展目标跟踪 PHD滤波 均值漂移 新生未知 粒子滤波
基于熵惩罚的EM未知杂波估计的PHD多目标跟踪算法 预览 被引量:1
7
作者 柏茂羽 丁勇 胡忠旺 《电光与控制》 北大核心 2017年第4期27-32,共6页
针对概率假设密度多目标跟踪算法中存在的杂波强度未知的问题,提出一种基于熵惩罚的EM未知杂波估计的PHD多目标跟踪(EPEM-PHD)算法。首先采用有限混合模型对未知杂波密度建模,其次分别对混合权重及缺失参数施加熵惩罚因子,然后通过自... 针对概率假设密度多目标跟踪算法中存在的杂波强度未知的问题,提出一种基于熵惩罚的EM未知杂波估计的PHD多目标跟踪(EPEM-PHD)算法。首先采用有限混合模型对未知杂波密度建模,其次分别对混合权重及缺失参数施加熵惩罚因子,然后通过自适应动态系数调节,使得混合模型低权值分量加速消亡,减少了算法迭代次数,且算法对初始参数不敏感。仿真结果表明,该算法在杂波强度未知的环境下,具有精度高、跟踪稳定的优势,提高了PHD滤波器在多目标跟踪中的性能。 展开更多
关键词 多目标跟踪 PHD 未知杂波估计 熵惩罚 EM
在线阅读 下载PDF
均方根嵌入式容积粒子PHD多目标跟踪方法 预览 被引量:2
8
作者 熊志刚 黄树彩 +2 位作者 赵炜 苑智玮 徐晨洋 《自动化学报》 EI CSCD 北大核心 2017年第2期238-247,共10页
针对基于概率假设密度算法(Probability hypothesis density,PHD)的非线性多目标跟踪精度低、滤波发散等问题,提出了一种新的PHD算法—改进的均方根嵌入式容积粒子PHD算法(Advanced square-root imbedded cubature particle PHD,ASRI... 针对基于概率假设密度算法(Probability hypothesis density,PHD)的非线性多目标跟踪精度低、滤波发散等问题,提出了一种新的PHD算法—改进的均方根嵌入式容积粒子PHD算法(Advanced square-root imbedded cubature particle PHD,ASRICP-PHD).新的算法在初始化采样时将整个采样区域等概率划分为若干个区域,然后利用既定的准则从每个区域抽取粒子,并利用均方根嵌入式容积滤波方法对每个粒子进行滤波,来拟合重要密度函数,预测和更新多目标状态的PHD.仿真结果表明该算法能对多目标进行有效跟踪,相比拟随机采样法和伪随机采样,等概率采样的方法在多目标位置估计和数目估计上有更高的精度. 展开更多
关键词 多目标跟踪 概率假设密度 均方根嵌入式容积滤波 等概率采样
在线阅读 下载PDF
基于量测驱动新生目标强度估计的PHD滤波算法 预览
9
作者 张祺琛 丁勇 柏茂羽 《电光与控制》 北大核心 2017年第2期13-18,24共7页
针对多目标跟踪中存在的新生目标强度未知的问题,提出一种基于量测驱动新生目标强度估计的PHD(MDTBI-PHD)滤波算法。该算法采用增广状态空间方法,在由真实目标状态与虚拟目标(杂波)状态构成的增广状态空间上实现PHD多目标跟踪。算... 针对多目标跟踪中存在的新生目标强度未知的问题,提出一种基于量测驱动新生目标强度估计的PHD(MDTBI-PHD)滤波算法。该算法采用增广状态空间方法,在由真实目标状态与虚拟目标(杂波)状态构成的增广状态空间上实现PHD多目标跟踪。算法通过构造新生目标量测集,采用量测驱动的方式对新生目标强度进行估计,从而避免了对新生目标强度先验知识的依赖,同时,该算法也避免了未知杂波对真实目标强度估计的干扰。仿真结果表明,该算法在新生目标强度未知的情况下,具有对目标数目变化敏感的优势,可降低计算复杂度,明显提高跟踪精度。 展开更多
关键词 多目标跟踪 概率假设密度 新生目标强度 量测驱动 增广空间
在线阅读 下载PDF
多传感器高斯混合PHD融合多目标跟踪方法 预览 被引量:2
10
作者 申屠晗 薛安克 周治利 《自动化学报》 CSCD 北大核心 2017年第6期1028-1037,共10页
针对复杂环境下单传感器多目标跟踪方法效果不佳的问题,基于FISST(Finite set statistics)跟踪理论提出一种多传感器高斯混合PHD(Probability hypothesis density)多目标跟踪方法.首先,分析了FISST下多传感器PHD的形式化滤波器,在... 针对复杂环境下单传感器多目标跟踪方法效果不佳的问题,基于FISST(Finite set statistics)跟踪理论提出一种多传感器高斯混合PHD(Probability hypothesis density)多目标跟踪方法.首先,分析了FISST下多传感器PHD的形式化滤波器,在此基础上构建一种反馈式多传感器PHD融合跟踪框架;进一步利用高斯混合技术提出多传感器PHD跟踪方法;最后,通过解决多传感器后验PHD粒子匹配与融合问题提出三种算法.仿真实验表明,与常规高斯混合PHD跟踪算法相比,本文所提算法能够有效提高目标跟踪精度和鲁棒性. 展开更多
关键词 多传感器多目标跟踪 有限集统计 概率假设密度 高斯混合
在线阅读 下载PDF
基于多伯努利概率假设密度的扩展目标跟踪方法 预览 被引量:4
11
作者 李文娟 顾红 苏卫民 《电子与信息学报》 EI CSCD 北大核心 2016年第12期3114-3121,共8页
高分辨率雷达系统中,扩展目标一般会产生多个量测。现有随机有限集(RFS)类算法一般假定扩展目标的量测数目服从泊松分布,然而这个假设与实际情况不符。针对这一问题,该文提出一种多伯努利扩展目标概率假设密度(MB-ET-PHD)跟踪算... 高分辨率雷达系统中,扩展目标一般会产生多个量测。现有随机有限集(RFS)类算法一般假定扩展目标的量测数目服从泊松分布,然而这个假设与实际情况不符。针对这一问题,该文提出一种多伯努利扩展目标概率假设密度(MB-ET-PHD)跟踪算法。该算法首先假设扩展目标的量测数目服从多伯努利分布,然后通过有限集统计(FISST)理论的多目标微积分推导得到校正等式,最后给出了高斯混合(GM)框架的仿真结果。仿真结果表明该算法能够获得比泊松ET-PHD算法更好的跟踪性能。 展开更多
关键词 扩展目标跟踪 概率假设密度 多伯努利
在线阅读 免费下载
基于随机摄动再采样的粒子概率假设密度滤波器 预览 被引量:1
12
作者 徐从安 何友 +2 位作者 夏沭涛 程俊图 董云龙 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2819-2825,共7页
作为概率假设密度滤波的典型实现方式,粒子概率假设密度滤波器无需线性高斯等先验假设,因而在多目标跟踪中得到了广泛的应用。为解决粒子退化问题并保持粒子规模,该滤波器引入了重采样机制,然而,该重采样机制易引起粒子多样性耗尽,导致... 作为概率假设密度滤波的典型实现方式,粒子概率假设密度滤波器无需线性高斯等先验假设,因而在多目标跟踪中得到了广泛的应用。为解决粒子退化问题并保持粒子规模,该滤波器引入了重采样机制,然而,该重采样机制易引起粒子多样性耗尽,导致粒子贫化问题产生。为解决这一问题,该文提出一种新的基于随机摄动再采样的粒子概率假设密度滤波器。首先,全面分析了粒子概率假设密度滤波因粒子贫化问题导致目标失跟的过程。然后设计了一种随机摄动再采样算法,该算法在重采样导致粒子多样性缺失时,根据源粒子的位置与复制次数随机产生相应数目的新粒子,并对源粒子进行删减,其可在保留源粒子信息的前提下保持粒子的多样性。最后,该文将该算法纳入概率假设密度滤波框架,提出了一种新的粒子概率假设密度滤波器。仿真结果表明该滤波器在不显著增加运行时间的前提下能够克服粒子贫化问题,相比标准的粒子概率假设密度滤波器具有更好的跟踪性能。 展开更多
关键词 多目标跟踪 概率假设密度 粒子滤波 随机摄动再采样
在线阅读 免费下载
基于模型类型匹配PHD滤波器和TBM的多目标联合跟踪分类 预览
13
作者 詹锟 蒋宏 +1 位作者 赵天衢 于耀中 《系统工程与电子技术》 EI CSCD 北大核心 2016年第10期2235-2243,共9页
为了解决杂波和漏检下多目标的联合跟踪与分类问题,提出了模型类型匹配概率假设密度(probability hypothesis density,PHD)滤波器,同时将其与多传感器的可转移信度模型(transferable belief model,TBM)框架相结合,并用多个运动学雷... 为了解决杂波和漏检下多目标的联合跟踪与分类问题,提出了模型类型匹配概率假设密度(probability hypothesis density,PHD)滤波器,同时将其与多传感器的可转移信度模型(transferable belief model,TBM)框架相结合,并用多个运动学雷达和粒子滤波递推实现。该算法对飞行器的先验信息进行估计,从而替代了属性传感器。在预测阶段,根据模型和类型对PHD滤波器进行粒子匹配;传感器得到观测结果后进行粒子权重的更新;再根据粒子对应的权重得到目标的后验状态-模型-类型分布;这些PHD滤波器可以同时得到目标的状态和类型;结合TBM和航迹粒子标签算法,得到多个传感器的融合结果。仿真表明,本文提出的模型类型匹配PHD滤波器的性能比传统多模型PHD滤波器更精确,同时多传感器的TBM框架也全面提升了算法的性能。 展开更多
关键词 联合跟踪与分类 概率假设密度 可转移信度模型 粒子滤波 多传感器数据融合
在线阅读 下载PDF
基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法 预览 被引量:5
14
作者 吴卫华 江晶 +1 位作者 冯讯 刘重阳 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1490-1494,共5页
为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利... 为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普勒量测进行序贯更新,可获得更精确的似然函数和状态估计。仿真结果验证了该算法的有效性,表明在GM-CPHD基础上引入目标的多普勒信息可有效抑制杂波,显著改善跟踪性能。 展开更多
关键词 多目标跟踪 随机有限集 概率假设密度 高斯混合势化概率假设密度 脉冲多普勒雷达
在线阅读 免费下载
高斯粒子PHD滤波的多个弱小目标TBD算法 预览 被引量:7
15
作者 李翠芸 曹潇男 +1 位作者 廖良雄 江舟 《系统工程与电子技术》 EI CSCD 北大核心 2015年第4期740-745,共6页
针对现有多个弱小目标检测前跟踪(track-before-detect,TBD)算法存在的跟踪精度低,算法复杂度高等问题,提出一种新的基于概率假设密度(probability hypothesis density,PHD)的TBD算法。所提算法通过高斯粒子滤波对PHD中的各高... 针对现有多个弱小目标检测前跟踪(track-before-detect,TBD)算法存在的跟踪精度低,算法复杂度高等问题,提出一种新的基于概率假设密度(probability hypothesis density,PHD)的TBD算法。所提算法通过高斯粒子滤波对PHD中的各高斯项进行递归运算、进行多帧能量累积,并提取高斯项的均值为目标的状态,达到检测与跟踪多个弱小目标的目的。算法在随机集滤波框架下完成未知数目的多个弱小目标跟踪,不仅充分利用粒子滤波的非线性估计能力,同时避免了传统算法利用模糊聚类进行目标状态提取所带来的跟踪精度低等问题。仿真结果表明,所提算法与传统方法相比,在降低算法复杂度的同时,对多个红外弱小目标具有更加良好的实时检测和跟踪性能。 展开更多
关键词 检测前跟踪 概率假设密度 高斯粒子滤波 红外图像 多目标跟踪
在线阅读 下载PDF
基于箱粒子的多扩展目标PHD滤波 被引量:8
16
作者 宋骊平 严超 +1 位作者 姬红兵 梁萌 《控制与决策》 EI CSCD 北大核心 2015年第10期1759-1765,共7页
在高斯混合多扩展目标PHD滤波的基础上,结合最新兴起的箱粒子滤波,提出一种基于区间分析的多扩展目标PHD滤波算法.采用大小可控的非零矩形区域来代替传统的多个点量测,这样可降低权值计算中对量测分布的要求.仿真对比实验表明,采用区间... 在高斯混合多扩展目标PHD滤波的基础上,结合最新兴起的箱粒子滤波,提出一种基于区间分析的多扩展目标PHD滤波算法.采用大小可控的非零矩形区域来代替传统的多个点量测,这样可降低权值计算中对量测分布的要求.仿真对比实验表明,采用区间分析方法在保证近似于传统滤波精度的同时可降低计算复杂度,在目标数目估计及抗杂波干扰方面也具有较为突出的优势,并且可解决在目标靠近时由于不能正确给出子划分而造成的漏检问题. 展开更多
关键词 箱粒子 区间分析 概率假设密度 多目标跟踪 扩展目标
基于容积原则的概率假设密度滤波算法 预览 被引量:2
17
作者 王华剑 景占荣 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第12期1304-1309,共6页
为改善多目标跟踪问题中概率假设密度滤波精度与算法运行时间之间的关系,提高目标状态和数目的实时估计性能,提出了基于容积原则的概率假设密度滤波算法.该算法在高斯混合粒子概率假设密度的框架下,利用容积数值积分原则直接计算非线性... 为改善多目标跟踪问题中概率假设密度滤波精度与算法运行时间之间的关系,提高目标状态和数目的实时估计性能,提出了基于容积原则的概率假设密度滤波算法.该算法在高斯混合粒子概率假设密度的框架下,利用容积数值积分原则直接计算非线性随机函数的均值和方差,产生粒子滤波算法的重要性函数,实现高精度粒子的重构,来近似目标状态和数目的概率分布,并且在高斯混合概率假设密度滤波算法中进行采样和更新.仿真验证了所提出算法的有效性,其Wasserstein误差距离优化了17.32%,目标数估计均值也提高了23.72%. 展开更多
关键词 多目标跟踪 随机有限集 概率假设密度 容积原则 粒子滤波
在线阅读 免费下载
基于概率假设密度滤波方法的多目标跟踪技术综述 预览 被引量:37
18
作者 杨峰 王永齐 +1 位作者 梁彦 潘泉 《自动化学报》 EI CSCD 北大核心 2013年第11期1944-1956,共13页
概率假设密度(Probability hypothesis density,PHD)滤波方法在多目标跟踪、交通管制、图像处理以及多传感器管理等领域得到了广泛关注.本文对基于PHD滤波方法的多目标跟踪技术的产生、发展及研究现状进行了综述,主要包括PHD滤波器... 概率假设密度(Probability hypothesis density,PHD)滤波方法在多目标跟踪、交通管制、图像处理以及多传感器管理等领域得到了广泛关注.本文对基于PHD滤波方法的多目标跟踪技术的产生、发展及研究现状进行了综述,主要包括PHD滤波器、PHD执行方法、峰值提取及航迹提取技术、多传感器多目标跟踪及多传感器管理、PHD平滑器以及多目标跟踪性能评价指标等,并对PHD滤波器的相关应用进行介绍.最后,基于现有PHD滤波进展,提出了PHD滤波技术在多目标跟踪领域需要重点关注的若干问题. 展开更多
关键词 概率假设密度 多目标跟踪 贝叶斯滤波 峰值及航迹提取
在线阅读 下载PDF
MM-CBMeMBer滤波器跟踪多机动目标 预览 被引量:3
19
作者 熊波 甘露 《雷达学报》 2012年第3期238-245,共8页
多模型(Multiple Model,MM)概率假设密度(Probability Hypothesis Density,PHD)滤波器能同时估计机动目标个数及状态,但其序贯蒙特卡罗(Sequential Monte Carlo,SMC)实现运用粒子聚类算法提取目标状态,不仅引入额外计算量,... 多模型(Multiple Model,MM)概率假设密度(Probability Hypothesis Density,PHD)滤波器能同时估计机动目标个数及状态,但其序贯蒙特卡罗(Sequential Monte Carlo,SMC)实现运用粒子聚类算法提取目标状态,不仅引入额外计算量,且可能导致目标丢失。针对这一问题,该文提出一种基于多模型的势平衡无偏多目标多伯努利(Multiple Model Cardinality Balanced Multipletarget Multi—Bernoulli,MM-CBMeMBer)滤波器,在每次扫描杂波数低于20,检测概率大于0.9的环境中,该方法利用一组伯努利参数近似机动目标状态的后验概率,并通过对伯努利参数的简单运算估计出目标状态,有效地避免了常规聚类算法。仿真结果表明,该方法与多模型概率假设密度滤波器相比,表征估计误差的最优子模型分配距离明显降低。 展开更多
关键词 多机动目标跟踪 概率假设密度(Probability Hypothesis Density PHD) 势平衡无偏多目标多伯努利(Cardinality'Balanced MULTIPLE target Multi—Bernoulli CBMeMBer) 多模型(Multiple Model MM) 序贯蒙特卡罗(Sequential Monte Carlo SMC)
在线阅读 免费下载
多目标滤波中的多传感器概率假设密度算法 预览 被引量:7
20
作者 杨可 傅忠谦 +1 位作者 王剑亭 林日钊 《电子与信息学报》 EI CSCD 北大核心 2012年第6期 1368-1373,共6页
多传感器情况下的多目标概率假设密度(PHD)滤波是建立在假设模型上实现的。该文用随机有限集(RFS)方法描述多目标状态空间和传感器量测空间,分析了多传感器通用假设模型下的探测概率、似然函数和杂波分布,在此基础上利用概率产生泛... 多传感器情况下的多目标概率假设密度(PHD)滤波是建立在假设模型上实现的。该文用随机有限集(RFS)方法描述多目标状态空间和传感器量测空间,分析了多传感器通用假设模型下的探测概率、似然函数和杂波分布,在此基础上利用概率产生泛函(PGFL)推导出了多传感器PHD滤波递归式,进而提出粒子标记法多传感器贯序蒙特卡洛PHD(SMC-PHD)滤波等价实现算法,降低了多传感器PHD滤波的计算复杂度。最后给出了算法的具体实现,得到了良好的多目标数目和可跟踪多目标状态的估计。 展开更多
关键词 多传感器滤波 概率假设密度 概率产生泛函 假设模型 粒子标记法
在线阅读 免费下载
上一页 1 2 4 下一页 到第
使用帮助 返回顶部 意见反馈