Studying quantum properties of a system has been quite popular in quantum mechanics. One of the most important systems that are very crucial to the framework of quantum mechanics is the system of harmonic oscillator a...Studying quantum properties of a system has been quite popular in quantum mechanics. One of the most important systems that are very crucial to the framework of quantum mechanics is the system of harmonic oscillator a system whose classical evolution is known to exhibit peculiar chaotic dynamics. We are motivated to investigate the behavior of quantum properties for a system with position and time dependent perturbed. Starting with Hamiltonian, we determined the equation of motion and obtained the wave function. The energy of the whole system using the operator ordering method was found. We show that the quantum mechanical picture alludes to a chaotic dynamics as expected. This is evidenced through the appearance of energy level crossings. An additional signature to this chaotic dynamics is observed in the transition of Eigen values from real to imaginary. We also show numerically that one can give the behavior of the system is Poincare section. By so doing we confirmed that increasing and decreasing the perturbation amplitude of the system becomes chaotic.展开更多
Investigating local dynamics of equilibrium points of nonlinear systems plays an important role in studying the behavior of dynamical systems. There are many different definitions for stable and unstable solutions in ...Investigating local dynamics of equilibrium points of nonlinear systems plays an important role in studying the behavior of dynamical systems. There are many different definitions for stable and unstable solutions in the literature. The main goal to develop stability definitions is exploring the responses or output of a system to perturbation as time approaches infinity. Due to the wide range of application of local dynamical system theory in physics, biology, economics and social science, it still attracts many researchers to play with its definitions to find out the answers for their questions. In this paper, we start with a brief review over continuous time dynamical systems modeling and then we bring useful examples to the playground. We study the local dynamics of some interesting systems and we show the local stable behavior of the system around its critical points. Moreover, we look at local dynamical behavior of famous dynamical systems, Hénon-Heiles system, Duffing oscillator and Van der Pol equation and analyze them. Finally, we discuss about the chaotic behavior of Hamiltonian systems using two different and new examples.展开更多
文摘Studying quantum properties of a system has been quite popular in quantum mechanics. One of the most important systems that are very crucial to the framework of quantum mechanics is the system of harmonic oscillator a system whose classical evolution is known to exhibit peculiar chaotic dynamics. We are motivated to investigate the behavior of quantum properties for a system with position and time dependent perturbed. Starting with Hamiltonian, we determined the equation of motion and obtained the wave function. The energy of the whole system using the operator ordering method was found. We show that the quantum mechanical picture alludes to a chaotic dynamics as expected. This is evidenced through the appearance of energy level crossings. An additional signature to this chaotic dynamics is observed in the transition of Eigen values from real to imaginary. We also show numerically that one can give the behavior of the system is Poincare section. By so doing we confirmed that increasing and decreasing the perturbation amplitude of the system becomes chaotic.
文摘Investigating local dynamics of equilibrium points of nonlinear systems plays an important role in studying the behavior of dynamical systems. There are many different definitions for stable and unstable solutions in the literature. The main goal to develop stability definitions is exploring the responses or output of a system to perturbation as time approaches infinity. Due to the wide range of application of local dynamical system theory in physics, biology, economics and social science, it still attracts many researchers to play with its definitions to find out the answers for their questions. In this paper, we start with a brief review over continuous time dynamical systems modeling and then we bring useful examples to the playground. We study the local dynamics of some interesting systems and we show the local stable behavior of the system around its critical points. Moreover, we look at local dynamical behavior of famous dynamical systems, Hénon-Heiles system, Duffing oscillator and Van der Pol equation and analyze them. Finally, we discuss about the chaotic behavior of Hamiltonian systems using two different and new examples.